For modern remote and closed systems of uninterruptible power supply, a operation of forced discharge of accumulator batteries is in demand. It is advisable to carry out the specified process of forced discharge with recuperation into the network. This way of leads: firstly, to a decrease in the mass of charging and discharging devices due to the exclusion of powerful resistive loads from the latter; secondly, to noticeable energy savings for closed autonomous objects. At the same time, for the regenerative current, increased requirements are imposed on its sinusoidality, the distortion coefficient of which is significantly influenced by the relationship between the EMF of the battery and the amplitude of the mains voltage, the discharge current and the maximum current of the coil of the active rectifier. The influence the frequency of the PWM control signal and the frequency of the regeneration current (mains frequency) is also possible. In uninterruptible systems, storage batteries are used with different total EMF and capacity that determines the discharge current. In addition, the mentioned values change during operation, and at forced discharge, various technique can be used that differ in the ratio of the discharge current to the capacity of the battery and the law of its change. Therefore, in the development of a universal system for forced discharge of a battery into a network with pulse-width control of the regenerative current shape, is relevant information on the dependences of the distortion factor of the sinusoidality on the above ratios of the battery voltage and the amplitude of the mains voltage, the discharge current and the maximum current of the coil of the active rectifier coil, as well as from the number of pulses for the regeneration current period. The article presents the results of work on obtaining diagrams of these dependencies. To obtain the latter, the function of the output current of the active rectifier is formed – of the regeneration current, then its spectral function. Using the latter, the current waveform distortions are estimated based on the spectral approach. The results obtained are in demand in the development of program modules for microcontrollers of the pulse-width regulators of the regeneration current, which implement algorithms for the formation of a current curve with acceptable values of the distortion coefficient of the sinusoidality when changing the parameters of the battery, network and discharge current.
The requirements for the reverse recovery current sinusoidality are high. Therefore, when developing programs for microcontrollers for a universal system of pulse-width modulation of the recovery current, it is important to have information on the dependences of the sinusoidality distortion degree on the relationship between the total electromotive force of the battery and the mains voltage, the amplitude of the recovery current, the inductance of the active rectifier coil, through which it flows, as well as between the frequencies of the network and the control PWM signal. The results of research into the development of a microcontroller modulation system for a routine forced (training or diagnostic) discharge of storage batteries into a single-phase network are presented. The sought expressions for the dependences of the sinusoidality distortion degree are obtained on the basis of the results of the spectral transformation of the regenerative current function obtained in MathCAD when the latter is formed by the control signal with single-stroke double-sided PWM-2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.