Normalized difference vegetation index data from the polar-orbiting National Oceanic and Atmospheric Administration meteorological satellites from 1982 to 1999 show significant variations in photosynthetic activity and growing season length at latitudes above 35 degrees N. Two distinct periods of increasing plant growth are apparent: 1982-1991 and 1992-1999, separated by a reduction from 1991 to 1992 associated with global cooling resulting from the volcanic eruption of Mt. Pinatubo in June 1991. The average May to September normalized difference vegetation index from 45 degrees N to 75 degrees N increased by 9% from 1982 to 1991, decreased by 5% from 1991 to 1992, and increased by 8% from 1992 to 1999. Variations in the normalized difference vegetation index were associated with variations in the start of the growing season of -5.6, +3.9, and -1.7 days respectively, for the three time periods. Our results support surface temperature increases within the same period at higher northern latitudes where temperature limits plant growth.
We examined trends in the averaged May–September AVHRR normalized difference vegetation index (NDVI) from 1982 to 1999 for the northern hemisphere. NDVI is closely related to the amount of absorbed photosynthetically active radiation; hence, trends in NDVI reflect trends in photosynthetic activity of land‐surface vegetation. Linear and nonlinear trend analysis techniques were applied to four differently processed and corrected Advanced Very High Resolution Radiometer (AVHRR) NDVI data sets. The results were compared in order to evaluate the effects of trends in NDVI unrelated to vegetation activity. We consistently found significant positive trends in averaged NDVI for latitude bands above 35°N in all but one data set; this one data set lacked corrections for sensor drift and instrument calibration. An impressive improvement in data quality was achieved by applying calibration and corrections for atmospheric effects.
Conservative estimates of the trends over the 1982–99 period range from 0.0015 to 0.0045 NDVI units year−1 for global latitude bands from 35 to 75°N, with trends generally higher in the 1990s than in the 1980s; trends in NDVI were larger than trends explained by artefacts. In the 1980s, North American and Eurasian trends were roughly comparable, whereas in the 1990s the North American trends were generally higher. A pixel‐level analysis shows the trends to be widespread, with large areas of Canada, Europe and northern Asia experiencing significant positive increases across all vegetated landcovers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.