Pattern formation at the solid-liquid interface of a growing crystal was studied in directional solidification using a perturbation technique. We analyzed both experimentally and numerically the stability range and dynamical selection of cellular arrays of ''doublets'' with asymmetric tip shapes, separated by alternate deep and shallow grooves. Applying an initial periodic perturbation of arbitrary wavelength to the unstable planar interface allowed us to force the interface to evolve into doublet states that would not otherwise be dynamically accessible from a planar interface. We determined systematically the ranges of wavelength corresponding to stable singlets, stable doublets, and transient unstable patterns. Experimentally, this was accomplished by applying a brief UV light pulse of a desired spatial periodicity to the planar interface during the planar-cellular transient using the model alloy Succinonitrile-Coumarin 152. Numerical simulations of the nonlinear evolution of the interface were performed starting from a small sinusoidal perturbation of the steady-state planar interface. These simulations were carried out using a computationally efficient phase-field symmetric model of directional solidification with recently reformulated asymptotics and vanishing kinetics ͓A. Karma and W.-J. Rappel, Phys. Rev. E 53 R3017 ͑1996͒; Phys. Rev. Lett. 77, 4050 ͑1996͒; Phys. Rev. E 57, 4323 ͑1998͔͒, which allowed us to simulate spatially extended arrays that can be meaningfully compared to experiments. Simulations and experiments show remarkable qualitative agreement in the dynamic evolution, steady-state structure, and instability mechanisms of doublet cellular arrays.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.