Chondrogenic differentiation of MSCs before implantation is a useful strategy for regeneration of alveolar bone and periodontal ligament, in the currently used rat model.
Periodontitis is a frequently diagnosed oral disease characterized by bone resorption and soft tissue loss around teeth. Unfortunately, currently available therapies only slow or arrest progress of the disease. Ideally, treatment of periodontal defects should be focused on complete regeneration of the lost tissues [(bone and periodontal ligament (PDL)]. As a result, this study used intrabony defects to evaluate the regenerative potential of an injectable macroporous calcium phosphate cement (CaP) in combination with bone morphogenetic protein-2 (BMP-2) or fibroblast growth factor-2 (FGF-2). After creating 30 periodontal defects in 15 Wistar rats, three treatment strategies were conducted: application of CaP only, CaP + BMP-2 and CaP + FGF-2. Animals were euthanized after 12 weeks and processed for histology and histomorphometry. Using CaP alone resulted in limited effects on PDL and bone healing. CaP + BMP-2 showed a good response for bone healing; a significant 2.4 fold increase in bone healing score was observed compared to CaP. However, for PDL healing, CaP + BMP-2 treatment showed no difference compared to the CaP group. The best results were observed with the combined treatment of CaP + FGF-2, which showed a significant 3.3 fold increase in PDL healing score compared to CaP + BMP-2 and a significant 2.6 fold increase compared to CaP. For bone healing, CaP + FGF-2 showed a significant 1.9 fold increase compared to CaP but no significant difference was noted compared to the CaP + BMP-2 group. The combination of a topical application of FGF-2 and an injectable CaP seems to be a promising treatment modality for periodontal regeneration.
Periodontitis is a disease affecting the supporting structures of the teeth, which can eventually result in tooth loss. A three-dimensional (3D) tissue culture model was developed that may serve to grow a 3D construct that not only transplants into defective periodontal sites, but also allows to examine the effect of mechanical load in vitro. In the current in vitro study, green fluorescent protein labeled periodontal ligament (PDL) cells form rat incisors were embedded in a 3D matrix and exposed to mechanical loading alone, to a chemical stimulus (Emdogain; enamel matrix derivative [EMD]) alone, or a combination of both. Loading consisted of unilateral stretching (8%, 1 Hz) and was applied for 1, 3, or 5 days. Results showed that PDL cells were distributed and randomly oriented within the artificial PDL space in static culture. On mechanical loading, the cells showed higher cell numbers. Moreover, cells realigned perpendicular to the stretching force depending on time and position, with great analogy to natural PDL tissue. EMD application gave a significant effect on growth and upregulated bone sialoprotein (BSP) and collagen type-I (Col-I), whereas Runx-2 was downregulated. This implies that PDL cells under loading might tend to act similar to bone-like cells (BSP and Col-I) but at the same time, react tendon like (Runx-2). The combination of chemical and mechanical stimulation seems possible, but does not show synergistic effects. In this study, a new model was successfully introduced in the field of PDLrelated regenerative research. Besides validating the 3D model to mimic an authentic PDL space, it also provided a useful and well-controlled approach to study cell response to mechanical loading and other stimuli.
Immobilization of ALP onto guided tissue regeneration (GTR)/ guided bone regeneration (GBR)-materials (Bio-Gide(®) and Bio-Oss(®)) can enhance the performance of these materials in GTR/GBR procedures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.