Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA.
The Cherenkov Telescope Array (CTA) is a new observatory for very high-energy (VHE) gamma rays. CTA has ambitions science goals, for which it is necessary to achieve full-sky coverage, to improve the sensitivity by about an order of magnitude, to span about four decades of energy, from a few tens of GeV to above 100 TeV with enhanced angular and energy resolutions over existing VHE gamma-ray observatories. An international collaboration has formed with more than 1000 members from 27 countries in Europe, Asia, Africa and North and South America. In 2010 the CTA Consortium completed a Design Study and started a three-year Preparatory Phase which leads to production readiness of CTA in 2014. In this paper we introduce the science goals and the concept of CTA, and provide an overview of the project. ?? 2013 Elsevier B.V. All rights reserved
Ground-based observatories have been collecting 0.2 − 20 TeV gamma rays from blazars for about twenty years. These gamma rays can experience absorption along the line of sight due to interactions with the extragalactic background light (EBL). In this paper, we show that the gamma-ray optical depth can be reduced to the convolution product of an EBL kernel with the EBL intensity, assuming a particular form for the EBL evolution. We extract the absorption signal from the most extensive set of TeV spectra from blazars collected so far and unveil a broad-band EBL spectrum from midultraviolet to far infrared. This spectrum is in good agreement with the accumulated emission of galaxies, constraining unresolved populations of sources. We propose a data-driven estimate of the Hubble constant based on the comparison of local and gamma-ray measurements of the EBL. After setting stringent upper-limits on the redshift of four TeV blazars, we investigate the 106 gammaray spectra in our sample and find no significant evidence for anomalies. The intrinsic TeV spectra are not harder than their GeV counterpart, and no spectral upturn is visible at the highest optical depths. Finally, we investigate a modification of the pair-creation threshold due to Lorentz invariance violation. A mild excess prevents us from ruling out an effect at the Planck energy, and we constrain for the first time the energy scale of the modification to values larger than sixty percent of the Planck energy.
We have investigated coherent time evolution of pseudomolecular states of an isolated (leadless) silicon double quantum dot, where operations are carried out via capacitively coupled elements. Manipulation is performed by short pulses applied to a nearby gate, and measurement is performed by a single-electron transistor. The electrical isolation of this qubit results in a significantly longer coherence time than previous reports for semiconductor charge qubits realized in artificial molecules.
A survey of Galactic gamma-ray sources at a median energy of ~20 TeV has been performed using the Milagro Gamma Ray Observatory. Eight candidate sources of TeV emission are detected with pre-trials significance $>4.5\sigma$ in the region of Galactic longitude $l\in[30^\circ,220^\circ]$ and latitude $b\in[-10^\circ,10^\circ]$. Four of these sources, including the Crab nebula and the recently published MGRO J2019+37, are observed with significances $>4\sigma$ after accounting for the trials involved in searching the 3800 square degree region. All four of these sources are also coincident with EGRET sources. Two of the lower significance sources are coincident with EGRET sources and one of these sources is Geminga. The other two candidates are in the Cygnus region of the Galaxy. Several of the sources appear to be spatially extended. The fluxes of the sources at 20 TeV range from ~25% of the Crab flux to nearly as bright as the Crab.Comment: Submitted to Ap
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.