Gray microcrystalline powders of ScTaN(2) were prepared from solid-state reactions of delta-ScN with Ta(3)N(5) powders at T = 1770 K. According to thermal analyses the compound is stable against oxidation by O(2) up to temperatures of T = 800 K. In an Ar atmosphere ScTaN(2) decomposes above T = 1250 K and in a N(2) atmosphere above T = 2000 K under release of N(2) to form delta-ScN and beta-Ta(2)N. The crystal structure (space group P6(3)/mmc, No. 194, a = 305.34(3) pm, c = 1056.85(9) pm, Z = 2) was refined on the basis of X-ray and neutron powder diffraction data. It comprises alternating layers of ScN(6/3) octahedra and trigonal TaN(6/3) prisms, which are also observed in the binary nitrides delta-ScN and theta-TaN, respectively. A small degree of anti-site defects (about 5%) was detected. Only a small solubility of ScN in epsilon-TaN was observed, while the solubility of TaN in delta-ScN is >/=10 mol % at T = 1820 K. ScTaN(2) is a diamagnetic small gap semiconductor or a semimetal, as inferred from magnetization and electrical resistivity measurements, consistent with band structure calculations. Chemical bonding analyses with the COHP method yield significant covalent Ta-Ta interactions. Topological analyses of the electron localization function reveal unexpected Ta-Ta three-center bonding basins within seemingly empty trigonal prisms of the TaN(6/3) layers.
The system Li-V-N was studied by means of X-ray and neutron powder diffraction, thermal and chemical analyses, and XAS spectroscopy at the vanadium K-edge. Three polymorphs of Li(7)[VN(4)] have been established from X-ray and neutron powder diffraction (gamma-Li(7)[VN(4)], space group Pfourmacr;3n, No. 218, a = 960.90(4) pm, V = 887.23(6) x 10(6) pm(3), Z = 8; beta-Li(7)[VN(4)], space group Pathremacr;, No. 205, a = 959.48(3) pm, V = 883.31(5) x 10(6) pm(3), Z = 8; alpha-Li(7)[VN(4)], P4(2)/nmc, No. 137, a = 675.90(2) pm, c = 488.34(2) pm, V = 223.09(1) x 10(6) pm(3), Z = 2). Crystallographic and phase relations are discussed. All three modifications are diamagnetic, indicating vanadium in the oxidation state +5. The V-K XAS spectra support the oxidation state assignment, the non-centrosymmetric coordination (tetrahedral), and the nearly identical second coordination sphere of vanadium, made up from Li in all three phases. The 3d-related features of the spectra display strongly localized properties. The phase transitions appear to be reconstructive; no direct group-subgroup symmetry relations of the crystal structures exist. The formation of solid solutions between Li(2)O and beta-Li(7)[VN(4)] with the general formula Li(1.75)((V(0.25(1)(-)(x))Li(0.25)(x))(N(1)(-)(x)O(x)())) with 0
Li(3)[ScN(2)] was prepared from Li(3)N with Sc or ScN in a nitrogen atmosphere at 1020 K as a light yellow powder with an optical band gap of about 2.9 eV. The crystal structure was refined based on X-ray and neutron powder diffraction data (Ia$\bar 3$, Z=16, X-ray diffraction: R(profile)=0.078, R(Bragg)=0.070; Neutron diffraction: R(profile)=0.077, R(Bragg)=0.074; Rietfeld: a=1003.940(8) pm, Guinier: a=1004.50(3) pm). Li(3)[ScN(2)] is an isotype of Li(3)[AlN(2)] and Li(3)[GaN(2)] and crystallizes in an ordered superstructure of the Li(2)O structure type, leading to a three-dimensional framework of all-vertex-sharing tetrahedra 3[infinity[ScN[4/2][3-]]. Li is displaced from the center of a tetrahedron of N atoms in the direction of one trigonal face. Li(3)[ScN(2)] decomposes above 1050 K to form ScN and Li(3)N. Calculations of the periodic nodal surface (PNS) and of the electron localization function (ELF) support the picture of a covalent Sc-N network separated from isolated Li cations, whereby scandium d orbitals are involved in the chemical bonding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.