The Cryogenic Dark Matter Search (CDMS) employs Ge and Si detectors to search for weakly interacting massive particles (WIMPs) via their elastic-scattering interactions with nuclei while discriminating against interactions of background particles. CDMS data, accounting for the neutron background, give limits on the spin-independent WIMP-nucleon elastic-scattering cross section that exclude unexplored parameter space above 10 GeV͞c 2 WIMP mass and, at .75% C.L., the entire 3s allowed region for the WIMP signal reported by the DAMA experiment. Extensive evidence indicates that a large fraction of the matter in the universe is nonluminous, nonbaryonic, and "cold"-nonrelativistic at the time matter began to dominate the energy density of the universe [1][2][3]. Weakly interacting massive particles (WIMPs) are an excellent candidate for nonbaryonic, cold dark matter [2,4]. Minimal supersymmetry provides a natural WIMP candidate in the form of the lightest superpartner, with a typical mass M ϳ 100 GeV͞c 2 [5][6][7][8]. WIMPs are expected to have collapsed into a roughly isothermal, spherical halo within which the visible portion of our galaxy resides. WIMPs scatter off nuclei via the weak interaction, potentially allowing their direct detection [9,10]. The expected spectrum of recoil energies (energy given to the recoiling nucleus during the interaction) is exponential with a characteristic energy of a few to tens of keV [11]. The expected event rate is model dependent, but is generically 1 kg 21 d 21 or lower [10]. This Letter reports new exclusion limits on the spinindependent WIMP-nucleon elastic-scattering cross section by the Cryogenic Dark Matter Search (CDMS). The rate of rare WIMP-nucleon interactions is constrained by extended exposure of detectors that discriminate WIMPinduced nuclear recoils from electron recoils caused by interactions of background particles [12,13].The ionization yield Y (the ratio of ionization production to recoil energy in a semiconductor) of a particle interaction differs greatly for nuclear and electron recoils. CDMS detectors measure phonon and electron-hole pair production to determine recoil energy and ionization yield for each event. The data discussed here were obtained with two types of detectors, Berkeley Large Ionization-and Phonon-mediated (BLIP) and Z-sensitive Ionization-and Phonon-mediated (ZIP) detectors [12][13][14][15][16][17][18]. For both types, the drift field for the ionization measurement is supplied by radially segmented electrodes on the faces of the disk-shaped crystals [19]. In BLIP detectors, phonon production is determined from the detector's calorimetric temperature change. In ZIP detectors, athermal phonons are collected to determine phonon production and xy position. Detector performance is discussed in detail elsewhere [14,[16][17][18][19][20].Photons cause most bulk electron recoils, while lowenergy electrons incident on the detector surfaces cause low-Y electron recoils in a thin surface layer ("surface events"). Neutron, photon, and electron sources a...
This review gives a survey on the use and applications of technetium-94m ((94m)Tc) as a non-conventional positron emission tomography (PET) radionuclide for molecular imaging. The first part of this review describes the production and processing of (94m)Tc. The second part covers basic concepts of technetium coordination chemistry with a special focus on the synthesis of (94m)Tc-labeled compounds for molecular imaging purposes. The review concludes with a summary and an outlook on the prospects of using (94m)Tc in the field of PET chemistry and molecular imaging.
The most recent CDMS data run (Run 20) was the first run in which multiple ZIP detectors were deployed. Three Si (0.100 kg each) and 3 Ge (0.250 kg each) ZIPs were run with the goals of fully testing such a configuration as well as measuring the γ , β , and n rates simultaneously with Ge and Si detectors. Calibration with γ and n sources established the bulk electron recoil leakage into the neutron band to be less that 0.2%. Low background data taken during the summer of 2000 produced a simultaneous measurement of the muon coincident neutron background with Si and Ge detectors.
Abstract. The Cryogenic Dark Matter Search (CDMS) employs detectors which are capable of simultaneously measuring the ionization and phonon energies deposited by a particle collision. These detectors are 1-cm-thick, 7-cm-diameter crystals of either germanium or silicon with a thin film of aluminum and tungsten patterned on the surface. This presentation discusses the testing regimen that a typical CDMS detector undergoes before it gets approval for final installation at the CDMS II deep site in Soudan, MN which will come online in early 2002. Now that our technology is relatively stable, the main focus of our test facilities is to provide quality control for the mass production of our detectors. First, the critical temperatures of the tungsten and other basic quantities are measured in preparation for iron implantation, which will bring the Tc down to the desired range ( 70 mK). The same basic measurements are taken again after implantation to assure that the correct Tc was achieved. Finally, a detailed map of energy response as a function of position is made to calibrate residual inhomogeneities across the surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.