Discrimination of murmurs in heart sounds is accomplished by means of time-frequency representations (TFR) which help to deal with non-stationarity. Nevertheless, classification with TFR is not straightforward given their large dimension and redundancy. In this paper we compare several methodologies to apply Principal Component Analysis (PCA) to TFR as a dimensional reduction scheme, which differ in the form that features are represented. Besides, we propose a method which maximizes information among TFR preserving information within TFRs. Results show that the methodologies that represent TFRs as matrices improve discrimination of heart murmurs, and that the proposed methodology shrinks variability of the results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.