Increased water content of subgrade soils can lead to degradation of their quality and result in pavement distress. Pavement performance depends on the modulus of the compacted unsaturated subgrade soil as well as that of the underlying natural soil deposits. The soil modulus is a strong function of water content; therefore, changes in water content over the life of the pavement must be understood. In this study, it has been found that for a relatively near-surface groundwater table, significant potential exists for capillary rise into subgrade soils. For fine-grained soils in particular, the height of this capillary rise can be quite substantial. Results from capillary rise column experiments have shown that soils wetted above the groundwater table through capillary rise remain at a degree of saturation averaging about 60 percent. It has also been found that soil suction within this capillary zone must be determined through the use of soil water characteristic curves or direct measurement. The conventional assumption that negative pore water pressures can be estimated by backward extrapolation above the groundwater table of a line of slope γ w is only appropriate in a very thin region above the groundwater table, where soils are wetted to a degree of saturation of 85 percent or more.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.