The Monte Carlo results in lattice QCD for the pressure and energy density at small temperature T < 155 MeV and zero baryonic chemical potential are analyzed within the hadron resonance gas model. Two extensions of the ideal hadron resonance gas are considered: the excluded volume model which describes a repulsion of hadrons at short distances and Hagedorn model with the exponential mass spectrum. Considering both of these models one by one we do not find the conclusive evidences in favor of any of them. The controversial results appear because of rather different sensitivities of the pressure and energy density to both excluded volume and Hagedorn mass spectrum effects.On the other hand, we have found a clear evidence for a simultaneous presence of both of them.They lead to rather essential contributions: suppression effects for thermodynamical functions of the hadron resonance gas due to the excluded volume effects and enhancement due to the Hagedorn mass spectrum.
The van der Waals (VDW) equation of state predicts the existence of a first-order liquid-gas phase transition and contains a critical point. The VDW equation with Fermi statistics is applied to a description of the nuclear matter. The nucleon number fluctuations near the critical point of nuclear matter are studied. The scaled variance, skewness, and kurtosis diverge at the critical point. It is found that the crossover region of the phase diagram is characterized by the large values of the scaled variance, the almost zero skewness, and the significantly negative kurtosis. The rich structures of the skewness and kurtosis are observed in the phase diagram in the wide region around the critical point, namely, they both may attain large positive or negative values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.