We present very early, high-cadence photometric observations of the nearby Type Ia SN 2017cbv. The light curve is unique in that it has a blue bump during the first five days of observations in the U , B, and g bands, which is clearly resolved given our photometric cadence of 5.7 hr during that time span. We model the light curve as the combination of early shocking of the supernova ejecta against a nondegenerate companion star plus a standard SN Ia component. Our best-fit model suggests the presence of a subgiant star 56 R from the exploding white dwarf, although this number is highly model-dependent. While this model matches the optical light curve well, it overpredicts the observed flux in the ultraviolet bands. This may indicate that the shock is not a blackbody, perhaps because of line blanketing in the UV. Alternatively, it could point to another physical explanation for the optical blue bump, such as interaction with circumstellar material or an unusual nickel distribution. Early optical spectra of SN 2017cbv show strong carbon (C II λ6580) absorption up through day −13 with respect to maximum light, suggesting that the progenitor system contains a significant amount of unburned material. These early results on SN 2017cbv illustrate the power of early discovery and intense follow-up of nearby supernovae to resolve standing questions about the progenitor systems and explosion mechanisms of SNe Ia.
Type Ibn supernovae (SNe) are a small yet intriguing class of explosions whose spectra are characterized by lowvelocity helium emission lines with little to no evidence for hydrogen. The prevailing theory has been that these are the core-collapse explosions of very massive stars embedded in helium-rich circumstellar material (CSM). We report optical observations of six new SNe Ibn: PTF11rfh, PTF12ldy, iPTF14aki, iPTF15ul, SN2015G, and iPTF15akq. This brings the sample size of such objects in the literature to 22. We also report new data, including a near-infrared spectrum, on the Type Ibn SN 2015U. In order to characterize the class as a whole, we analyze the photometric and spectroscopic properties of the full TypeIbn sample. We find that, despite the expectation that CSM interaction would generate a heterogeneous set of light curves, as seen in SNe IIn, most TypeIbn light curves are quite similar in shape, declining at rates around 0.1 mag day −1 during the first month after maximum light, with a few significant exceptions. Early spectra of SNe Ibn come in at least two varieties, one that shows narrow PCygni lines and another dominated by broader emission lines, both around maximum light, which may be an indication of differences in the state of the progenitor system at the time of explosion. Alternatively, the spectral diversity could arise from viewing-angle effects or merely from a lack of early spectroscopic coverage. Together, the relative light curve homogeneity and narrow spectral features suggest that the CSM consists of a spatially confined shell of helium surrounded by a less dense extended wind.
We present the spectroscopic evolution of AT 2017gfo, the optical counterpart of the first binary neutron star (BNS) merger detected by LIGO and Virgo, GW170817. While models have long predicted that a BNS merger could produce a kilonova (KN), we have not been able to definitively test these models until now. From one day to four days after the merger, we took five spectra of AT 2017gfo before it faded away, which was possible because it was at a distance of only 39.5 Mpc in the galaxy NGC 4993. The spectra evolve from blue (∼ 6400K) to red (∼ 3500K) over the three days we observed. The spectra are relatively featureless -some weak features exist in our latest spectrum, but they are likely due to the host galaxy. However, a simple blackbody is not sufficient to explain our data: another source of luminosity or opacity is necessary. Predictions from simulations of KNe qualitatively match the observed spectroscopic evolution after two days past the merger, but underpredict the blue flux in our earliest spectrum. From our best-fit models, we infer that AT 2017gfo had an ejecta mass of 0.03M , high ejecta velocities of 0.3c, and a low mass fraction ∼ 10 −4 of high-opacity lanthanides and actinides. One possible explanation for the early excess of blue flux is that the outer ejecta is lanthanide-poor, while the inner ejecta has a higher abundance of high-opacity material. With the discovery and follow-up of this unique transient, combining gravitational-wave and electromagnetic astronomy, we have arrived in the multi-messenger era. arXiv:1710.05853v1 [astro-ph.HE]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.