When the wind speed decreases below a certain value (1-2 m s À1 ) meandering (low frequency horizontal wind oscillations) starts to prevail. In these conditions it becomes difficult to define a precise mean wind direction and to estimate the airborne dispersion. To study the wind and turbulence characteristics during meandering, two sonic anemometer datasets, containing hourly wind observations, were analysed: the first one, lasting 1 year, was recorded in complex terrain (Graz, Austria) and the second one, lasting about 1 month, was recorded in a rather flat area (Tisby, Sweden). It was found that meandering seems to exist under all meteorological conditions regardless of the stability or wind speed and it was confirmed that meandering sets a lower limit for the horizontal wind component variances. Further, it was found that the autocorrelation functions of the horizontal wind components, computed for the low wind cases, show an oscillating behaviour with the presence of large negative lobes. Two different relationships from the literature, and relevant to these oscillatory aspects, were fitted to the data. They contain two parameters: one associated and relevant to the classical integral time scale and the second with meandering occurrence. Based on these relationships, expressions for the mean square displacement of particles r 2 y ðtÞ were also derived.
An analysis of the turbulence structure in a perturbed boundary layer and in low-wind regimes is presented. The study is based on 15 months of continuous wind and turbulence measurements gathered, within the framework of the Urban Turbulence Project, at three levels (5, 9 and 25 m) on a mast located in the outskirts of the city of Turin (Italy). The aim of the work is to investigate low-frequency processes in a perturbed boundary-layer. In fact, the urban canopy and the heat island, together with frequent low-wind conditions, interact with and modify the turbulence structure. In order to investigate this modification, the velocity Eulerian autocorrelation functions together with both the Eulerian and Lagrangian timescales are shown and compared with the classical theory. The comparisons show that in low-wind cases the velocity autocorrelation functions are not simply exponential but present an oscillating behaviour. A method of normalization is proposed together with an analysis on the applicability of this function. The estimated Lagrangian timescales are compared with two widely used parametrizations. It is found that the presence of the urban fabric influences the turbulence time-scales and suggests the development of new parametrizations. Finally, higher-order statistics are evaluated and the relationship between higher-order and lower-order moments are analysed, pointing out the effects due to the urban environment.
Oscillations in the horizontal components of the wind velocity associated with oscillations in air temperature during low–wind speed episodes are ubiquitous in the stable boundary layer and are labeled as wind meandering. The meandering structure is recognizable by a clear negative lobe in the Eulerian autocorrelation functions of the horizontal wind velocity components and of the sonic temperature and by a corresponding peak at low frequency in the velocity components and temperature spectra. These distinctive features are used to isolate meandering occurrences and to study its properties in relation to the classical description of the planetary stable boundary layer. It is shown that the ratio of the variance of the wind velocity vertical component over the variance of the composite of the wind velocity horizontal components splits the frequency distribution of meandering and nonmeandering events and divides the nocturnal boundary layer in two different regimes characterized by different turbulent properties. The data comparison with a turbulence model based on Rotta return to isotropy showed that meandering and nonmeandering cases may have similar dynamics. This suggests that meandering may not be connected to a laminarization of the flow and shows that the Rotta scheme may still describe the energetic transfer between wind velocity components in the very stable boundary layer if the Rotta similarity constant c depends on the flux Richardson number. The data confirm a c value of 2.2 for Rif = 0 compatible with its conventional value. The analysis presented refers to one year of continuous measurements on 10 levels carried out at a coastal site in southeastern Brazil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.