Turbulence closures are fundamental for modelling the atmospheric diffusion in numerical codes and the resulting eddy diffusivities are key parameters in describing the transport and dispersion in the boundary layer. In this work, four turbulence closure schemes have been applied for reproducing a neutral flow over schematic complex terrain using the meteorological model RAMS. Two of the closures, a one-equation (E-l) and a two-equations (E-ε) model, have been implemented in RAMS in alternative to the ones originally available. In these cases, an analytical method based on the similarity theory for the atmospheric surface layer and boundary layer is adopted to calculate the empirical constants of the turbulence closures. Some examples of numerical studies performed to simulate the flow and turbulence over a 3-D hill in wind-tunnel experiment in neutral stratification are presented and discussed. An intercomparison of simulations related to different closures is considered by analysing the main features of the flow over the hill and by comparing calculated vertical profiles of turbulent kinetic energy with measured ones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.