This study is concerned with the boundary-layer separation from a rigid body surface in unsteady two-dimensional laminar supersonic flow. The separation is assumed to be provoked by a shock wave impinging upon the boundary layer at a point that moves with speed V sh along the body surface. The strength of the shock and its speed V sh are allowed to vary with time t, but not too fast, namely, we assume that the characteristic time scale t Re −1/2 /V 2 w . Here Re denotes the Reynolds number, and V w = −V sh is wall velocity referred to the gas velocity V ∞ in the free stream. We show that under this assumption the flow in the region of interaction between the shock and boundary layer may be treated as quasi-steady if it is considered in the coordinate frame moving with the shock. We start with the flow regime when V w = O(Re −1/8 ). In this case, the interaction between the shock and boundary layer is described by classical triple-deck theory. The main modification to the usual triple-deck formulation is that in the moving frame the body surface is no longer stationary; it moves with the speed V w = −V sh . The corresponding solutions of the triple-deck equations have been constructed numerically. For this purpose, we use a numerical technique based on finite differencing along the streamwise direction and Chebyshev collocation in the direction normal to the body surface. In the second part of the paper, we assume that 1 V w O(Re −1/8 ), and concentrate our attention on the self-induced separation of the boundary layer. Assuming, as before, that the Reynolds number, Re, is large, the method of matched asymptotic expansions is used to construct the corresponding solutions of the Navier-Stokes equations in a vicinity of the separation point.
This study is concerned with the boundary-layer separation from a rigid body surface in unsteady two-dimensional laminar supersonic flow. The separation is assumed to be provoked by a shock wave impinging upon the boundary layer at a point that moves with speed V sh along the body surface. The strength of the shock and its speed V sh are allowed to vary with time t, but not too fast, namely, we assume that the characteristic time scale t Re −1/2 /V 2 w . Here Re denotes the Reynolds number, and V w = −V sh is wall velocity referred to the gas velocity V ∞ in the free stream. We show that under this assumption the flow in the region of interaction between the shock and boundary layer may be treated as quasi-steady if it is considered in the coordinate frame moving with the shock. We start with the flow regime when V w = O(Re −1/8 ). In this case, the interaction between the shock and boundary layer is described by classical triple-deck theory. The main modification to the usual triple-deck formulation is that in the moving frame the body surface is no longer stationary; it moves with the speed V w = −V sh . The corresponding solutions of the triple-deck equations have been constructed numerically. For this purpose, we use a numerical technique based on finite differencing along the streamwise direction and Chebyshev collocation in the direction normal to the body surface. In the second part of the paper, we assume that 1 V w O(Re −1/8 ), and concentrate our attention on the self-induced separation of the boundary layer. Assuming, as before, that the Reynolds number, Re, is large, the method of matched asymptotic expansions is used to construct the corresponding solutions of the Navier-Stokes equations in a vicinity of the separation point.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.