The fracture behaviour of polymers is strongly affected by the addition of rigid particles. Several features of the particles have a decisive influence on the values of the fracture toughness: shape and size, chemical nature, surface nature, concentration by volume, and orientation. Among those of thermoplastic matrix, polypropylene (PP) composites are the most industrially employed for many different application fields. Here, a review on the fracture behaviour of PP-based particulate composites is carried out, considering the basic topics and experimental techniques of Fracture Mechanics, the mechanisms of deformation and fracture, and values of fracture toughness for different PP composites prepared with different particle scale size, either micrometric or nanometric.
Three different experimental techniques [compression experiments at low strain rates, instrumented falling-weight impact tests, and dynamic mechanical analysis (DMA)] have been used for the mechanical characterization of a collection of crosslinked closed-cell polyolefin foams of different chemical compositions, densities, and type of cellular structure. The experimental results that it is possible to obtain from each technique are shown, and related to the different applications of these materials. The relationships between the structure and the mechanical properties are also presented.
A unique set of double-edge notched tension specimens of a Polyethylene Terephthalate Glycol-modi¿ed ¿lm was tested in mode I, plane stress. The load was registered on a universal testing machine. The displacements, ligament lengths, and video frames were recorded by a Digital Image Correlation system. With these registered data, the essential work of fracture, J-integral, and crack tip opening displacement (CTOD) fracture concepts have been applied. The onset of crack initiation was through a complete yielded ligament. The analysis showed that the intrinsic speci¿c work of fracture, we, is the speci¿c energy just up to crack initiation, which is an initiation value. we has both a coincident value and the same con-ceptual meaning as Jo, the J-integral at the onset of crack initiation. The relationship between Jo and CTOD is also determined. The in¿uence on the notch quality when the specimens were sharpened by two different procedures, femtosecond laser ablation and razor blade sliding, was analysed in detail.Peer ReviewedPostprint (author's final draft
In this paper, carbon-nanofibre-reinforced polypropylene foams were prepared and characterized regarding their foaming behaviour, cellular structure and both thermo-mechanical as well as electrical properties. Polypropylene (PP) nanocomposites containing 5, 10 and 20 wt% of carbon nanofibres (CNF) and a chemical blowing agent were prepared by melt-mixing inside a twin-screw extruder and subsequently water-cooled and pelletized. The extruded nanocomposites were later foamed using a one-step compression-moulding process. The thermo-mechanical properties of the CNF-reinforced PP foams were studied, analyzing the influence of the carbon nanofibres on the cellular structure and subsequent thermo-mechanical behaviour of the foams. Carbon nanofibres not only seemed to act as nucleating agents, reducing the average cell size of the foams and increasing their cell density for similar expansion ratios, but also helped produce mechanically-improved foams, even reaching for the 20 wt% CNF-reinforced ones a specific modulus around 1.2 GPa x cm3/g for densities as low as 300 kg/m3. An increasingly higher electrical conductivity was assessed for both the solids as well as the foams with increasing the amount of carbon nanofibres.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.