Abstract. The astrophysical nature of r-process sites is a long-standing mystery and many probable sources have been suggested, among them lower-mass core-collapse supernovae (in the range 8-10 M ), higher-mass core-collapse supernovae (with masses ≥20 M ) and neutron star mergers. In this work, we present a detailed inhomogeneous chemical evolution study that considers for the first time neutron star mergers as major r-process sources, and compare this scenario to the ones in which core-collapse supernovae act as dominant r-process sites. We conclude that, due to the lack of reliable iron and r-process yields as a function of progenitor mass, it is not possible at present to distinguish between the lower-mass and higher-mass supernovae scenarios within the framework of inhomogeneous chemical evolution. However, neutron-star mergers seem to be ruled out as the dominant r-process source, since their low rates of occurrence would lead to r-process enrichment that is not consistent with observations at very low metallicities. Additionally, the considerable injection of r-process material by a single neutron-star merger leads to a scatter in [r-process/Fe] ratios at later times which is much too large compared to observations.
Abstract. We present results of a detailed chemical analysis performed on 23 main-sequence turnoff stars having −3.4 ≤ [Fe/H] ≤ −2.2, a sample selected to be highly homogeneous in T eff and log(g). We investigate the efficiency of mixing in the early Galaxy by means of the [Mg/Fe] ratio, and find that all values lie within a total range of 0.2 dex, with a standard deviation about the mean of 0.06 dex, consistent with measurement errors. This implies there is little or no intrinsic scatter in the early ISM, as suggested also by the most recent results from high-quality VLT observations. These results are in contrast with inhomogeneous Galactic chemical evolution (iGCE) models adopting present supernova (SN) II yields, which predict a peakto-peak scatter in [Mg/Fe] as high as 1 dex at very low metallicity, with a corresponding standard deviation of about 0.4 dex. We propose that cooling and mixing timescales should be investigated in iGCE models to account for the apparent disagreement with present observations. The contrast between the constancy and small dispersion of [Mg/Fe] reported here and the quite different behaviour of [Ba/Fe] indicates, according to this interpretation, that Mg and Ba are predominantly synthesised in different progenitor mass ranges.
Abstract.Inhomogeneous chemical evolution models of galaxies that try to reproduce the scatter seen in elementto-iron ratios of metal-poor halo stars are heavily dependent on theoretical nucleosynthesis yields of core-collapse supernovae (SNe II). Thus, inhomogeneous chemical evolution models present themselves as a test for stellar nucleosynthesis calculations. Applying such a model to our Galaxy reveals a number of shortcomings of existing nucleosynthesis yields. One problem is the predicted scatter in [O/Fe] and [Mg/Fe] which is too large compared to that observed in metal-poor halo stars. This can be either due to the oxygen or magnesium yields or due to the iron yields (or both). However, oxygen and magnesium are α-elements that are produced mainly during hydrostatic burning and thus are not affected by the theoretical uncertainties in the collapse and explosion of a massive star. Stellar iron yields, on the other hand, depend heavily on the choice of the mass-cut between ejecta and protoneutron star and are therefore very uncertain. We present iron yield distributions as a function of progenitor mass that are consistent with the abundance distribution of metal-poor halo stars and are in agreement with observed 56 Ni yields of core-collapse supernovae with known progenitor masses. The iron yields of lower-mass SNe II (in the range 10−20 M ) are well constrained by these observations. Present observations, however, do not allow us to determine a unique solution for higher-mass SNe. Nevertheless, the main dependence of the stellar iron yields as function of progenitor mass can be derived and may be used as a constraint for future core-collapse supernova/hypernova models. A prediction of hypernova models is the existence of ultra α-element enhanced stars at metallicities [Fe/H] ≤ −2.5, which can be tested by future observations. The results are of importance for the earliest stages of galaxy formation when the ISM is dominated by local chemical inhomogeneities and the instantaneous mixing approximation is not valid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.