Wendelstein 7-X is an optimized stellarator with superconducting magnetic field coils that just started plasma operation at Max-Planck-Institut für Plasmaphysik (IPP) Greifswald. Utilizing the electron beam technique the first vacuum flux surface measurements were performed during the commissioning of the magnet system. For the magnetic configurations investigated so far the existence of closed and nested flux surfaces has been validated. All features of the configuration designed for the initial plasma operation phase, including a predicted island chain, were confirmed. No evidence on significant magnetic field errors was found. Furthermore, the effect of the elastic deformation of the non-planar coils was confirmed by the measurements.
Abstract:The concepts for the control of the fusion experiment WENDELSTEIN 7-X (W7-X) consider all requirements regarding safety, steady state operation, flexibility, availability, performance and scalability. The early demonstration of the steady-state control concepts with all interacting parties is necessary to minimize development costs since integrated tests of components are scheduled for a later stage of the W7-X project planning. Therefore the implementation of an integrated test bed for the control concepts of W7-X is very important to minimize project risks. Main objectives of the test bed project are an integrated test of control, data acquisition, diagnostics operation and data processing in a W7-X like environment (steady-state segmented operation, realtime control, interplay of the central slow control system with components control systems, on-line data analysis tools), a demonstration of the W7-X safety concept and the education of engineers and session leaders for a W7-X like machine operation. The contribution describes the use of the small in-house stellarator experiment WEGA as test bed for the W7-X control concepts.
The new quality of the superconducting fusion device Wendelstein 7-X (W7-X) is its capability of steady state operation. Additionally the fusion device W7-X is a very complex technical system. The modular and strongly hierarchical control system has been designed to cope with these two requirements unique for fusion devices.To minimize the risks before commissioning the control and data acquisition system at W7-X it will be thoroughly tested in a prototype installation at the WEGA stellarator. WEGA is a classical stellarator which allows steady state plasma pulses at a magnetic field of 0.5T. Despite its lesser complexity WEGA has the same main components, e.g. magnetic coil systems, ECRH, and diagnostics as W7-X and is therefore considered to be a suitable test-bed for the control system. The installation of the new W7-X like control and data acquisition system has been finished in March this year. Individual components of the control system have already been commissioned during the installation phase. In April final commissioning and testing of the complete system took place. First discharges fully controlled by the prototype control system have been realized. The contribution will focus on first discharges controlled by the new system. Furthermore it presents first experiences that will incorporate into the further development of the control system and the tools for planning, preparation, and realization of plasma discharges.
The influence of magnetic field configuration on an electron cyclotron resonance ion sourcea) Rev. Sci. Instrum. 79, 02A310 (2008); 10.1063/1.2812343Effect of magnetic-field configuration on the beam intensity from electron cyclotron resonance ion source and RIKEN superconducting electron cyclotron resonance ion source Rev. Sci. Instrum. 77, 03A304 (2006); Abstract. Discharge wall conditioning is an effective tool to improve plasma performance in tokamaks and stellarators. RF Discharge Conditioning (RFDC) techniques are envisaged for use during operational campaigns on superconducting devices like the ITER tokamak and W7-X stellarator, as alternative to DC Glow Discharge Conditioning which is inefficient in presence of magnetic fields. This contribution investigates RFDC in both the ion and electron cyclotron range of frequencies (ICRF and ECRF) on the WEGA device (Max-Planck-Institute for Plasma Physics, Greifswald, Germany) as preparation for W7-X operation.ECRF discharges produced by localised absorption of RF power at EC resonance layers suffer from poor radial discharge homogeneity in the tokamak vacuum magnetic field configuration, severely limiting the plasma wetted wall areas and consequently the conditioning efficiency. The non-localised production of ICRF discharges by collisional RF power absorption features much improved discharge homogeneity making Ion Cyclotron Wall Conditioning (ICWC) the favoured RFDC technique for superconducting tokamaks. RFDC with the stellarator vacuum magnetic field needs to aim at sufficient plasma densities at and outside the last closed flux surface (LCFS), maximising the convective plasma flux along the open field lines to the wall. Whereas for ICRF discharges this condition is easily fulfilled, on WEGA for He-ECRF discharges this could be achieved as well by off axis heating close to the LCFS.In stellarator magnetic field configuration it is found that He-ICWC for wall desaturation is at least one order of magnitude more efficient than He-ECWC. Novel ECWC methods are proposed that can decrease this efficiency gap with ICWC to a factor 2-3. The efficiency difference is less pronounced in case of H 2 -ICWC and ECWC for isotopic exchange.
Abstract. Although both 1 st harmonic ordinary mode (O1) and 2 nd harmonic extra-ordinary mode (X2) have been successfully used to initiate pre-ionization and breakdown in many devices, a complete theoretical model is still missing to explain the success of this method. Moreover, some experimental observations are not completely understood, such as what occurs during the delay time between the turn-on of ECRH power and first signals of density or light measurements. Since during this free period the ECRH power has to be absorbed by in-vessel components, it is of prime importance to know what governs this delay time. Recently, dedicated start-up experiments have been performed on WEGA, using a 28 GHz ECRH system in X2-mode. This machine has the interesting capability to be run also as a tokamak allowing comparative experiments between stellarator ( /2 > 0) and tokamak ( /2 = 0) configurations. Different scans in heating power, neutral gas pressure, and rotational transform ( ) show clearly that the start-up is a two step process. A first step following the turn-on of the ECRH power during which no measurable electron density (or just above the noise level in some cases), ECE and radiated power is detected. Its duration depends strongly on the level of injected power. The second step corresponds to the gas ionization and plasma expansion phase, with a velocity of density build-up and filling-up of the vessel volume depending mainly on pressure, gas and rotational transform. Moreover, an interesting scenario of ECRH pre-ionization without loop voltage in tokamak configuration by applying a small optimal vertical field can be relevant for start-up assistance on future experiments like ITER. The results from this experimental parametric study are useful for the modeling of the start-up assisted by the second harmonic electron cyclotron resonance heating. The aim of this work is to establish predictive scenarios for both ITER and W7-X operation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.