Flux pinning in high-temperature superconductors such as YBa 2 Cu 3 O 7Ϫx ͑YBCO͒ in the past has been accomplished by pinning the vortex cores. We demonstrate magnetic-domain-induced flux pinning of the magnetic flux of vortices in a ferromagnet-superconductor bilayer consisting of CoPt grown on YBCO, where the ferromagnet has uniaxial perpendicular magnetic anisotropy and a random domain structure. We observe an improvement of the critical current due to magnetic pinning at temperatures close to the transition temperature.
The formation of superconducting YBa2Cu3O7–x (Y123) by in situ pulsed laser deposition from a stoichiometric Y123 target typically requires an oxygen-ambient environment (P ˜ 100–300-mtorr O2) and appropriate substrate temperature during deposition. We have found that pulsed laser deposition from a Y123 target in vacuo onto a (001) LaAlO3 substrate favors the formation of Y2O3. We observed that the Y2O3 (001) films yield three-dimensional nanoscale morphologies that are markedly different from the planar growth surface of conventional superconducting c-axis Y123 films and Y2O3 films formed from the pulsed laser ablation of a Y2O3 target.
Y2O3 is a super refractory oxide with high thermal stability and finds various applications in optics and microelectronic devices. Recently, Eu-activated Y2O3 films attracted much research interest due to its promising applications in flat panel field emission displays. Epitaxial Y2O3:Eu thin films have been grown on LaA1O3(LAO). in this paper we report a transmission electron microscopy (TEM) study of Y2O3 nano tip-structure grown on LAO by pulsed laser deposition using stoichiometric YBa2Cu3O7-σ.a target under a low oxygen pressure. The experimental work was conducted within a JEOL2010F TEM equipped with an ED AX system.Fig.l is a low magnification cross-section TEM image of the nano-tip structure grown on (001) LAO. The lattice parameters of the tips were calculated to be that of Y2O3 by using LAO as a standard for indexing the diffraction patterns. Nano electron beam diffraction patterns from the tips along [100] and [110] axis are shown in Fig.2a and Fig.2b, respectively, in agreement with the simulated ones using bulk Y2O3 structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.