CTS thin films have been prepared by soft annealing and sulfurization of electrodeposited Cu-Sn precursors. The stacked elemental layer approach was used to deposit the elemental precursors on an ITO substrate using a two-electrode electrochemical cell, with graphite plate as the counter electrode. The stacked metallic layer was then soft annealed in an Argon atmosphere at 350 °C and subsequently, sulfurized at different temperatures of 500 0C and 550 0C for one hour to form CTS films. The films have been characterized by a variety of techniques. From the XRD analysis, the CTS thin films obtained at a sulfurization temperature of 500 oC showed the coexistence of SnS, Cubic-Cu2Sn3S7 and hexagonal-Cu4S16Sn7 phases. The majority phase was clearly identified as cubic-Cu2SnS3, with (111) preferential orientation. For the films sulfurized at 550 oC, the pattern of prominent peaks showed the presence of the Hexagonal-Cu4S16Sn7 phase of CTS with preferred orientation along the (202) plane. There were relatively fewer low intensity peaks assigned to the secondary phases, indicating an improvement in CTS purity at the higher sulfurization temperature. SEM images of the CTS films show a compact, homogenous morphology, with densely packed grains. The films sulfurized at 550 oC, showed better homogeneity. EDAX spectra of the sulfurized alloy precursors were consistent with the formation of CTS. The film obtained at the lower sulfurization temperature had two band gaps as a consequence of the mixture of phases present in the sample. The film obtained at the higher sulfurization temperature had an energy band gap of 1.5 eV, which falls within the range of values reported in literature. The present work provides a new synthesis route for the electrodeposition of CTS thin film for device applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.