In response to global ischemia, tissue xanthine dehydrogenase was converted to xanthine oxidase in all tissues with half-times of conversion at 370C of -3.6, 6, 7, and 14 h for the liver, kidney, heart, and lung, respectively. The time course of enzyme conversion at 40C was greatly extended with half-conversion times of 6, 5, 5, and 6 d for the respective tissues. Increases in xanthine oxidase activity were accompanied by the appearance of a distinct new protein species with greater electrophoretic mobility. The oxidase from ischemic rat liver was purified 781-fold and found to migrate with a higher mobility on native gels than the purified native dehydrogenase. Sodium dodecyl sulfate profiles revealed the presence of a single major band of 137 kD for the native dehydrogenase, whereas the oxidase had been partially cleaved generating polypeptides of 127, 91, and 57 kD.Polypeptide patterns for the oxidase resemble those seen following limited in vitro proteolysis of the native dehydrogenase supporting a proteolytic mechanism for the conversion of xanthine dehydrogenase to oxidase in ischemic rat liver.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.