The study aimed to identify sources of campylobacter in 10 housed broiler flocks from three United Kingdom poultry companies. Samples from (i) the breeder flocks, which supplied the broilers, (ii) cleaned and disinfected houses prior to chick placement, (iii) the chickens, and (iv) the environments inside and outside the broiler houses during rearing were examined. Samples were collected at frequent intervals and examined for Campylobacter spp. Characterization of the isolates using multilocus sequence typing (MLST), serotyping, phage typing, and flaA restriction fragment length polymorphism typing was performed. Seven flocks became colonized during the growing period. Campylobacter spp. were detected in the environment surrounding the broiler house, prior to as well as during flock colonization, for six of these flocks. On two occasions, isolates detected in a puddle just prior to the birds being placed were indistinguishable from those colonizing the birds. Once flocks were colonized, indistinguishable strains of campylobacter were found in the feed and water and in the air of the broiler house. Campylobacter spp. were also detected in the air up to 30 m downstream of the broiler house, which raises the issue of the role of airborne transmission in the spread of campylobacter. At any time during rearing, broiler flocks were colonized by only one or two types determined by MLST but these changed, with some strains superseding others. In conclusion, the study provided strong evidence for the environment as a source of campylobacters colonizing housed broiler flocks. It also demonstrated colonization by successive campylobacter types determined by MLST during the life of a flock.
The present systems for cleaning the plastic crates (drawers) used to 22 transport live poultry to the processing plant are known to be inadequate for removing 23 microbial contamination. 24 2. To investigate possible improvements, a mobile experimental rig was constructed 25 and operated in the lairage of a poultry processing plant. The cleaning rig could 26 simulate the conditions of commercial cleaning systems and utilise freshly-emptied 27 crates from the processing plant.
Carcasses along slaughter lines were exposed to normal slaughterhouse air or ultraclean air provided from a unit fitted with a HEPA filter. In cattle slaughterhouses, aerobic viable counts were measured by sponging the brisket at the end of the line to determine whether the slaughterhouse air had led to contamination of the carcasses. Furthermore, a replica cattle carcass with settle plates attached was exposed to similar conditions. The greatest contamination of the plates occurred at the hide puller (P < 0.01). The use of ultraclean air reduced the deposition of organisms onto settle plates (P < 0.01). The airborne route contributed to contamination in cattle slaughterhouses, but other vectors were more important. Further study of contamination of the brisket, at the time that it was first exposed, showed that knives transfer contamination from the hide. The use of ultraclean air at this position showed that the airborne route was a contributor to contamination (P < 0.1), but it was not the greatest vector. In lamb slaughterhouses, the highest counts on settle plates were found at the fleece puller (P < 0.05). The highest counts on the lamb carcasses were found on the brisket exposed from the start of the line to just after the fleece puller (P < 0.05). There was no clear relationship between the measured counts and the concentration of organisms in the air, indicating that the airborne route in lamb slaughterhouses contributes less to carcass contamination than do the surface contacts.
1. A readily identifiable strain of Escherichia coli K12 was used as a 'marker' organism to determine the sources, routes and patterns of microbial cross-contamination during mechanical defeathering of broiler chicken carcases. 2. Inoculation of scald water with the marker organism led to a relatively even pattern of carcase contamination during subsequent defeathering. Microbial cross-contamination was greater by this route of inoculation than by either surface inoculation of a 'seeder' carcase or oral inoculation of a live bird one day before slaughter. 3. Dispersal of the marker organism was strongly influenced by the mechanical action of the defeathering machines. Forward transmission of the marker occurred by aerosol or large airborne droplets and particulates such as feathers. Moving carcases through the defeathering machines when these were non-operational clearly reduced backward transmission of the marker. 4. Although microbial dispersal was unaffected by increasing the spacing between individual carcases or installing a water curtain at the entry and exit of the defeathering machines, shielding of carcases with aluminium baffles reduced counts of the marker organism from contaminated carcases by > 90%. 5. The results imply that microbial cross-contamination of broiler chicken carcases during defeathering occurs mainly via the airborne route, which could be contained by physical means.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.