Removable orthodontic appliances fabricated from poly (methyl methacrylate) (PMMA) have been routinely used for active orthodontic correction and as retention appliances. This article reports the use of a combination of biodegradable-grade poly (lactic acid) (PLA) and cooking-grade sesame oil as a biodegradable alternative for PMMA. The underlying purpose is to combat the environmental hazards due to nondegradable PMMA as well as to overcome its structural and mechanical drawbacks. The fabrication technique that has been used is fused deposition modeling-based 3D printing technology. Oil-dipping for 24 h was done to render the PLA hydrophobic and to reduce its brittleness. Incorporation of oil within the PLA base plate has been confirmed by FT-IR and FT-Raman spectroscopic techniques. The PLA-cooking oil material has exhibited satisfactory tensile, compressive and flexural strengths. The proposed material has demonstrated excellent attributes in terms of product precision, dimensional stability, density, hardness, and maximum load bearing capacity for the purpose of fabricating orthodontic appliances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.