Conductivity and transport properties have been determined for gelled polymer electrolytes of three compositions: a base PVdF-polymer gel with organic carbonate solvents as plasticizers and LiN(SO(2)C(2)F(5))(2) electrolyte, a second polymer electrolyte with 5 mass % 1-ethyl-3-methylimidazolium bisperfluoroethylsulfonyl imide (EMI-BETI) added to the base polymer electrolyte, and a third PVdF polymer electrolyte using only EMI-BETI as the plasticizer. Conductivities were studied over the temperature range +25 to -40 degrees C, and for all three gels, the temperature dependence of the conductivities was found to follow the VTF equation, which is consistent with the free volume model for ion transport. For the gel containing 5 mass % EMI-BETI, transport numbers were determined from +50 to -20 degrees C and were found to decrease as the temperature decreased. Although there are no theoretical models to treat and interpret the temperature dependence of transport numbers, we found that a modified VTF equation resulted in an excellent fit to the temperature dependence of the transport number, which is another confirmation of a free volume model for transport in these gelled polymer electrolytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.