Colloidal chemistry was used to synthesize GaN quantum dots. A GaN precursor, polymeric gallium imide, {Ga(NH)3/2}n, which was prepared by the reaction of dimeric amidogallium with ammonia at room temperature, was heated in trioctylamine at 360 °C for one day to produce GaN nanocrystals. The GaN particles were separated, purified, and partially dispersed in a nonpolar solvent to yield transparent colloidal solutions that consisted of individual GaN particles. The GaN nanocrystals have a spherical shape and mean diameter of about 30±12 Å. The spectroscopic behavior of colloidal transparent dispersion has been investigated and shows that the band gap of the GaN nanocrystals shifts to slightly higher energy due to quantum confinement. The photoluminescence spectrum at 10 K (excited at 310 nm) shows band edge emission with several emission peaks in the range between 3.2 and 3.8 eV, while the photoluminescence excitation spectrum shows two excited-state transitions at higher energies.
The lifetime of phosphorescent red organic light emitting diodes (OLEDs) is investigated employing either N,N′-diphenyl-N,N′-bis(1-naphthylphenyl)-1,1′-biphenyl-4,4′-diamine (NPB), TMM117, or 4,4′,4″-tris(N-carbazolyl)-triphenylamine (TCTA) as hole-conducting host material (mixed with an electron conductor). All OLED (organic vapor phase deposition-processed) show similar efficiencies around 30 lm/W but strongly different lifetimes. Quickly degrading OLED based on TCTA can be stabilized by doping exciton transfer molecules [tris-(phenyl-pyridyl)-Ir (Ir(ppy)3)] to the emission layer. At a current density of 50 mA/cm2 (12 800 cd/m2), a lifetime of 387 h can be achieved. Employing exciton transfer molecules is suggested to prevent the degradation of the red emission layer in phosphorescent white OLED.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.