GASP (GAs Stripping Phenomena in galaxies with MUSE) is a new integral-field spectroscopic survey with MUSE at the VLT aiming at studying gas removal processes in galaxies. We present an overview of the survey and show a first example of a galaxy undergoing strong gas stripping. GASP is obtaining deep MUSE data for 114 galaxies at z=0.04-0.07 with stellar masses in the range 10 9.2 -10 11.5 M in different environments (galaxy clusters and groups, over more than four orders of magnitude in halo mass). GASP targets galaxies with optical signatures of unilateral debris or tails reminiscent of gas stripping processes ("jellyfish galaxies"), as well as a control sample of disk galaxies with no morphological anomalies. GASP is the only existing Integral Field Unit (IFU) survey covering both the main galaxy body and the outskirts and surroundings, where the IFU data can reveal the presence and the origin of the outer gas. To demonstrate GASP's ability to probe the physics of gas and stars, we show the complete analysis of a textbook case of a "jellyfish" galaxy, JO206. This is a massive galaxy (9 × 10 10 M ) in a low-mass cluster (σ ∼ 500 km s −1 ), at a small projected clustercentric radius and a high relative velocity, with ≥90kpc-long tentacles of ionized gas stripped away by ram pressure. We present the spatially resolved kinematics and physical properties of gas and stars, and depict the evolutionary history of this galaxy.
The morphological types of galaxies in nine clusters in the redshift range are derived 0.1 [ z [ 0.25 from very good seeing images taken at the NOT and the La SillaÈDanish telescopes, with all galaxies at and within the central D1 Mpc2 area being classiÐed. With the purpose of investigating the M V \ [20 evolution of the fraction of di †erent morphological types with redshift, we compare our results with the morphological content of nine distant clusters studied by the MORPHS group, Ðve clusters observed with HST /WFPC2 at redshift z \ 0.2È0.3, and DresslerÏs large sample of nearby clusters. After having checked the reliability of our morphological classiÐcation both in an absolute sense and relative to the MORPHS scheme, we analyze the relative occurrence of elliptical, S0, and spiral galaxies as a function of the cluster properties and redshift. We Ðnd a large intrinsic scatter in the S0/E ratio, mostly related to the cluster morphology. In particular, in our cluster sample, clusters with a high concentration of ellipticals display a low S0/E ratio and, vice versa, low concentration clusters have a high S0/E. At the same time, the trend of the morphological fractions (%EÏs, %S0Ïs, %SpÏs) and of the S0/E and S0/Sp ratios with redshift clearly points to a morphological evolution : as the redshift decreases, the S0 population tends to grow at the expense of the spiral population, whereas the frequency of EÏs remains almost constant. We also analyze the morphology-density (MD) relation in our clusters and Ðnd thatÈsimilarly to higher redshift clustersÈa good MD relation exists in the high-concentration clusters, while it is absent in the less concentrated clusters. Finally, the comparison of the MD relation in our clusters with that of the MORPHS sample suggests that the transformation of spirals into S0 galaxies becomes more efficient with decreasing local density.
Galaxies that are being stripped of their gas can sometimes be recognized from their optical appearance. Extreme examples of stripped galaxies are the so-called "jellyfish galaxies" that exhibit tentacles of debris material with a characteristic jellyfish morphology. We have conducted the first systematic search for galaxies that are being stripped of their gas at low-z (z = 0.04−0.07) in different environments, selecting galaxies with varying degrees of morphological evidence for stripping. We have visually inspected B-and V-band images and identified 344 candidates in 71 galaxy clusters of the OMEGAWINGS+WINGS sample and 75 candidates in groups and lower mass structures in the PM2GC sample. We present the atlas of stripping candidates and a first analysis of their environment and their basic properties, such as morphologies, star formation rates and galaxy stellar masses.Candidates are found in all clusters and at all clustercentric radii, and their number does not correlate with the cluster velocity dispersion σ or X-ray luminosity L X . Interestingly, convincing cases of candidates are also found in groups and lower mass halos (10 11 −10 14 M e ), although the physical mechanism at work needs to be securely identified. All the candidates are disky, have stellar masses ranging from log M/M e <9 to > 11.5 and the majority of them form stars at a rate that is on average a factor of 2 higher (2.5σ) compared to non-stripped galaxies of similar mass. The few post-starburst and passive candidates have weak stripping evidence. We conclude that disturbed morphologies suggestive of stripping phenomena are ubiquitous in clusters and could be present even in groups and low mass halos. Further studies will reveal the physics of the gas stripping and clarify the mechanisms at work.
We search for massive and compact galaxies (superdense galaxies, hereafter SDGs) at z = 0.03 − 0.11 in the Padova-Millennium Galaxy and Group Catalogue, a spectroscopically complete sample representative of the local Universe general field population. We find that compact galaxies with radii and mass densities comparable to high-z massive and passive galaxies represent 4.4% of all galaxies with stellar masses above 3 × 10 10 M ⊙ , yielding a number density of 4.3 × 10 −4 h 3 Mpc −3 . Most of them are S0s (70%) or ellipticals (23%), are red and have intermediate-to-old stellar populations, with a median luminosity-weighted age of 5.4 Gyr and a median mass-weighted age of 9.2 Gyr. Their velocity dispersions and dynamical masses are consistent with the small radii and high stellar mass estimates. Comparing with the WINGS sample of cluster galaxies at similar redshifts, the fraction of superdense galaxies is three times smaller in the field than in clusters, and cluster SDGs are on average 4 Gyr older than field SDGs. We confirm the existence of a universal trend of smaller radii for older luminosity-weighted ages at fixed galaxy mass. As a consequence, the median mass-size relation shifts towards smaller radii for galaxies with older stars, but the effect is much more pronounced in clusters than in the field. Our results show that, on top of the well known dependence of stellar age on galaxy mass, the luminosity-weighted age of galaxies depends on galaxy compactness at fixed mass, and, for a fixed mass and radius, on environment. This effect needs to be taken into account in order not to overestimate the evolution of galaxy sizes from high-to low-z. Our results and hierarchical simulations suggest that a significant fraction of the massive compact galaxies at high-z have evolved into compact galaxies in galaxy clusters today. When stellar age and environmental effects are taken into account, the average amount of size evolution of individual galaxies between high-and low-z is mild, a factor ∼ 1.6.
Aims. We present the results from a comprehensive spectroscopic survey of the WINGS (WIde-field Nearby Galaxy-cluster Survey) clusters, a program called WINGS-SPE. The WINGS-SPE sample consists of 48 clusters, 22 of which are in the southern sky and 26 in the north. The main goals of this spectroscopic survey are: (1) to study the dynamics and kinematics of the WINGS clusters and their constituent galaxies, (2) to explore the link between the spectral properties and the morphological evolution in different density environments and across a wide range of cluster X-ray luminosities and optical properties. Methods. Using multi-object fiber-fed spectrographs, we observed our sample of WINGS cluster galaxies at an intermediate resolution of 6-9 Å and, using a cross-correlation technique, we measured redshifts with a mean accuracy of ∼45 km s −1 . Results. We present redshift measurements for 6137 galaxies and their first analyses. Details of the spectroscopic observations are reported. The WINGS-SPE has ∼30% overlap with previously published data sets, allowing us both to perform a complete comparison with the literature and to extend the catalogs. Conclusions. Using our redshifts, we calculate the velocity dispersion for all the clusters in the WINGS-SPE sample. We almost triple the number of member galaxies known in each cluster with respect to previous works. We also investigate the X-ray luminosity vs. velocity dispersion relation for our WINGS-SPE clusters, and find it to be consistent with the form L x ∝ σ 4 v .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.