The present investigation was performed to study the adsorption behavior of growth factors and their release characteristics from biodegradable implants in an in vitro study. We investigated the stability of growth factors administered on various scaffolds. We used porous tricalcium phosphate ceramics (alpha-TCP), a neutralized glass-ceramics (GB9N), a composite (polylactid/-glycolid/GB9N), and solvent dehydrated human bone as carriers. Block shaped scaffolds (sized: 7 x 7 x 10 mm) were loaded with 5 microg of either bone morphogenetic protein (rxBMP-4), basic fibroblast growth factor (rh-bFGF), or vascular endothelial growth factor (rh-VEGF) solved in 150 microL PBS. The growth factors were labeled with Iodine125 (I-125) for detecting the adsorbed and released amount of growth factors by counting the samples for total I-125 activity. We observed that the adsorption of these growth factors seems to depend on two different parameters: first on the nature of the tested material, and second on the growth factors on their own. The release kinetics of the growth factors from the biodegradable implants can be described as a two phase process-a very rapid release during the first hours by an elution of not adsorbed protein, followed by a specific release, which depends upon the chemical/physical interaction of the material and the growth factor used. Analyzing the eluted proteins on SDS-PAGEs rh-VEGF was degraded into a smaller fragment with a size of around 15 kDa, while rxBMP-4 and rh-bFGF showed a complete degradation into fragments smaller than 3 kDa after more than 3 days. Although this in vitro study suggests that biodegradable implants might be successfully used as carriers for osteogenic growth factors, the different release kinetics as well as the alteration of their molecular structure including loss of biological activity should be considered.
The present study examines intracranial pressure (ICP), cerebral perfusion pressure (CPP), and cerebral circulation immediately after experimental head injury in an animal model. The underlying systemic hemodynamic changes were also observed. To produce a standardized head injury, a fluid-percussion device was applied to the dura at the midline of 10 piglets. Seven other nontraumatized animals served as a control group. Hemodynamic parameters as well as ICP and CPP were recorded on-line, one value every 1.4 seconds. Cerebral blood flow (CBF) and cerebral vascular resistance (CVR) were measured three times using a microsphere technique. Immediately after head injury, the traumatized animals showed a sudden increase in ICP, with a maximum of 40 torr at 3 to 5 minutes, while there was a pronounced decrease in CPP from 85 to 40 torr. The CBF in the various brain areas fell from 55 to 22 ml/min/100 gm within 5 minutes after the impact, and CVR increased to 300% of control values within 90 minutes. The findings of this study demonstrated that cerebral circulation is critically jeopardized within a few minutes after trauma. This, in combination with a subsequent increase in CVR, makes the early development of ischemic brain damage very likely. In traumatized patients, treatment prior to hospital admission must therefore be directed at prevention of this fatal course.
The present investigation was performed to study the bioactivity of osteoinductive and osteoproliferative growth factors after release from biocompatible bone implants. Three types of porous carriers were used in this study: hydroxyapatite, alpha tricalcium phosphate, and a neutralized glass ceramic. Implants were loaded with recombinant human bone morphogenetic protein 2 (rh-BMP-2) and recombinant human basic fibroblast growth factor (rh-bFGF) in a concentration of 2 microg/150 microL PBS each. The released growth factors were then applicated into SAOS-2-cell cultures. After 3, 5, and 7 days cell differentiation was measured by the activity of alkaline phosphatase (ALP), cell proliferation by using a MTT assay as well as a cell counter. Rh-BMP-2 released during the first hour from the scaffolds led to a significant increase of the activity of ALP in the incubated SAOS-2-cell culture after 3, 5, and 7 days. However, the incubation with rh-BMP-2 released after 24 h was not found to increase the expression of ALP. The incubation of cell cultures with rh-bFGF released during the first hour led to a significant increase of cell number and of extinction in the MTT assay, whereas this increase was not observed after incubation with rh-bFGF released after 24 h. The in vitro measured biological activity of released growth factors from the surface of synthetic implants is time-depending. If prolonged osteoinductive and osteoproliferative potency of growth factors is desired, a modified application technique should be chosen to stabilize those proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.