We present a new multi-pixel high resolution (R > ∼ 10 7 ) spectrometer for the Stratospheric Observatory for Far-Infrared Astronomy (SOFIA). The receiver uses 2 × 7-pixel subarrays in orthogonal polarization, each in an hexagonal array around a central pixel. We present the first results for this new instrument after commissioning campaigns in May and December 2015 and after science observations performed in May 2016. The receiver is designed to ultimately cover the full 1.8−2.5 THz frequency range but in its first implementation, the observing range was limited to observations of the [CII] line at 1.9 THz in 2015 and extended to 1.83−2.07 THz in 2016. The instrument sensitivities are state-of-the-art and the first scientific observations performed shortly after the commissioning confirm that the time efficiency for large scale imaging is improved by more than an order of magnitude as compared to single pixel receivers. An example of large scale mapping around the Horsehead Nebula is presented here illustrating this improvement. The array has been added to SOFIA's instrument suite already for ongoing observing cycle 4.
We present the performance of the upGREAT heterodyne array receivers on the SOFIA telescope after several years of operations. This instrument is a multi-pixel high resolution (R 10 7 ) spectrometer for the Stratospheric Observatory for Far-Infrared Astronomy (SOFIA). The receivers use 7-pixel subarrays configured in a hexagonal layout around a central pixel. The low frequency array receiver (LFA) has 2x7 pixels (dual polarization), and presently covers the 1.83-2.06 THz frequency range, which allows to observe the [CII] and [OI] lines at 158 µm and 145 µm wavelengths. The high frequency array (HFA) covers the [OI] line at 63 µm and is equipped with one polarization at the moment (7 pixels, which can be upgraded in the near future with a second polarization array). The 4.7 THz array has successfully flown using two separate quantum-cascade laser local oscillators from two different groups. NASA completed the development, integration and testing of a dual-channel closed-cycle cryocooler system, with two independently operable He compressors, aboard SOFIA in early 2017 and since then, both arrays can be operated in parallel using a frequency separating dichroic mirror. This configuration is now the prime GREAT configuration and has been added to SOFIA's instrument suite since observing cycle 6.
Abstract-We present the upGREAT THz heterodyne arrays for far-infrared astronomy. The Low Frequency Array (LFA) is designed to cover the 1.9-2.5 THz range using 2x7-pixel waveguide-based HEB mixer arrays in a dual polarization configuration. The High Frequency Array (HFA) will perform observations of the [OI] line at ~4.745 THz using a 7-pixel waveguide-based HEB mixer array. This paper describes the common design for both arrays, cooled to 4.5 K using closedcycle pulse tube technology. We then show the laboratory and telescope characterization of the first array with its 14 pixels (LFA), which culminated in the successful commissioning in May 2015 aboard the SOFIA airborne observatory observing the [CII] fine structure transition at 1.905 THz. This is the first successful demonstration of astronomical observations with a heterodyne focal plane array above 1 THz and is also the first time highpower closed-cycle coolers for temperatures below 4.5 K are operated on an airborne platform.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.