levels which might have a significant role in the light shift of the 22p level due to the 1.06-/im laser field are 6s, 7s, Ad, and 5d. These are far from being resonantly coupled to the 22p level, at least 1700 cm" 1 away. Their relative positions are such that their combined effects are partially cancelled* A rough evaluation showed that under these conditions the 5d level, which is expected to be responsible for the largest effect, contributes to the shift of the 22p level an amount of approximately 3xl0" 3 MHz/ MW-cm' 2 . This is at least 4 orders of magnitude less than the measured shift, and is thus completely negligible, With respect to the shift Lv g of the ground state, since it cannot be measured alone the best procedure is to calculate it as carefully and precisely possible. A calculation based on Fig. 1 has been carried out. 6 The result is &v g = -26.3 MHz/MW-cm" 2 . The dashed line in Fig. 3 corresponds to the sum of the two calculated shifts Ai/ e + Ay g , whereas the straight line corresponds to a least-squares fit on the measured shifts. Agreement between experimental and theoretical results is satisfactory.To conclude, this experiment provides clear evidence for the shift of a Rydberg level, due to an intense and strongly nonresonant em field. It is of interest to note that in a pure quantum treat-PACS numbers: 52.55.Gb, 52.35.Py On the PDX tokamak, large-amplitude magnetohydrodynamic (MHD) fluctuations have been observed during plasma heating by injection of high-ment, radiative corrections can be interpreted as the sum of spontaneous and stimulated radiative corrections. The net effect of spontaneous radiative corrections due to vacuum fluctuations is well known to be responsible for the Lamb shift. In the same spirit, the light shifts which have been studied in our experiment can perhaps be viewed as resulting from the stimulated radiative corrections induced by an intense and nonresonant em field.We thank Professor CI. Cohen-Tannoudji for many helpful discussions concerning both the experiment and its interpretation. We are indebted to Dr. M. Aymar and Dr. M. Crance for their calculation of the shift of the ground state.Strong magnetohydrodynamic activity has been observed in PDX neutral-be am-heated discharges. It occurs for fi T q^ 0.045 and is associated with a significant loss of fast ions and a drop in neutron emission. As much as 20%~-40% of the beam heating power may be lost. The instability occurs in repetitive bursts of oscillations of ^ 1 msec duration at 1-6-msec intervals. The magnetohydrodynamic activity has been dubbed the "fishbone instability" from its characteristic signature on the Mirnov coils.
Deuterium gas injected into ELMing H mode divertor discharges in the DIII-D tokamak typically reduced the total power at the divertor target ~2 times and the peak heat flux ~3 to 5 times with modest (<10%) degradation in plasma energy confinement. The parameter range for the discharges investigated was: Ip=1.0-2.0 MA, q95 approximately= 2.4-6.0 and total input power (≲20 MW. Most of this reduction in heat flux occurred at the sudden formation of a high density, highly radiating region located between the outboard divertor separatrix strike point and the X point. This divertor behaviour is associated with a `partially detached' divertor plasma condition, which is referred to in this paper as the partially detached divertor (PDD) regime. With the onset of the PDD, typically at a line averaged density of 0.6 to 0.7 times the Greenwald density limit, an abrupt reduction in plasma electron pressure (≳4 times) was observed at the outboard divertor separatrix strike point; at the same time, however, only a modest (≲30%) change in the electron pressure was observed upstream near the outboard midplane separatrix. The data suggest that significant plasma momentum loss occurred between the high density, highly radiative region and the (downstream) divertor separatrix target. Plasma performance showed little degradation with the onset of the PDD regime. Deuterium injection made only modest changes in the temperature and density profile shapes near the midplane separatrix of the main plasma. The PDD approach is shown to be compatible with discharges operating at low safety factor (i.e. q95 equivalent to 2.9) and to be effective in significantly reducing toroidal asymmetry in observed divertor plasma properties (e.g., heat flux). The potential for operating in a steady state has been demonstrated using feedback control of the neutral pressure outside the main plasma
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.