After developing the radio-wave technique for various conditions in laboratory-scale and technical plant-scale experiments, field tests in combination with biodegradation and soil vapor extraction were carried out at three sites: (i) a bioremediation facility for ex situ cleaning of soil, (ii) in situ remediation of contamination at a former storage facility for organic solvents, and (iii) a polluted soil under a former petrol station. Various electrode arrangements such as parallel plates, rod arrays, and coaxial antenna were applied in order to meet the site-specific requirements optimally. Soil temperatures between 35 and 100 degrees C were established. The successful tests gave much insight into the engineering, physical, biological, and chemical aspects of radio-wave application. General conclusions on the appropriateness and competitiveness of the radio-wave method as well as on preferred application fields are drawn.
Dielectric heating of soil using radio waves (RW) can be applied to support various remediation techniques, namely biodegradation and soil vapor extraction, under in situ, on site or ex situ conditions. To improve the spatial resolution of energy dissipation, the design of rod electrodes was modified with an air gap around the electrode allowing thermal treatment focused to the desired soil volume. A combination of low- and high-frequency electrical energy was successfully applied to homogeneously heat the capillary fringe, the boundary region of saturated and unsaturated zones. The energetic efficiency of the method was evaluated showing that an efficient transformation of RW energy to heat in the target volume can be achieved. By comparing biodegradation and soil respiration under conventional and electric (low-frequency resistive and dielectric RW) heating, the compatibility of the electric heating methods with bioremediation processes could be proven. Therefore, RW-supported microbial degradation of pollutants is a real option for accelerated soil remediation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.