[1] Episodic tremor and slip (ETS) events in subduction zones occur in the general vicinity of the plate boundary, downdip of the locked zone. In developing an understanding of the ETS phenomenon it is important to relate the spatial occurrence of nonvolcanic tremor to the principal structural elements within the subduction complex. In Cascadia, active and passive source seismic data image a highly reflective, dipping, low-velocity zone (LVZ) beneath the fore-arc crust; however, its continuity along the margin is not established with certainty, and its interpretation is debated. In this work we have assembled a large teleseismic body wave data set comprising stations from northern California to northern Vancouver Island. Using stacked receiver functions we demonstrate that the LVZ is well developed along the entire margin from the coast eastward to the fore-arc basins (Georgia Strait, Puget Sound, and Willamette Valley). Combined with observations and predictions of intraslab seismicity, seismic velocity structure, and tremor hypocenters, our results support the thesis that the LVZ represents the signature of subducted oceanic crust, consistent with thermal-petrological modeling of subduction zone metamorphism. The location of tremor epicenters along the revised slab contours indicates their occurrence close to but seaward of the wedge corner. Based on evidence for high pore fluid pressure within the oceanic crust and a downdip transition in permeability of the plate interface, we propose a conceptual model for the generation of ETS where the occurrence and recurrence of propagating slow slip and low-frequency tremor are explained by episodic pore fluid pressure buildup and fluid release into or across the plate boundary.Citation: Audet, P., M. G. Bostock, D. C. Boyarko, M. R. Brudzinski, and R. M. Allen (2010), Slab morphology in the Cascadia fore arc and its relation to episodic tremor and slip,
[1] Episodic tremor and slip (ETS), the spatial and temporal correlation of slow slip events monitored via GPS surface displacements and nonvolcanic tremor (NVT) monitored via seismic signals, is a newly discovered mode of deformation thought to be occurring downdip from the seismogenic zone along several subduction zone megathrusts. To provide overall constraints on the distribution and migration behavior of NVT in southern Cascadia, we apply a semiautomated location algorithm to seismic data available during the EarthScope Transportable Array deployment to detect the most prominent pulses of NVT and invert analyst-refined relative arrival times for source locations. In the processing, we also detect distinct and isolated bursts of energy within the tremor similar to observations of low-frequency earthquakes in southwest Japan. We investigate in detail eight NVT episodes between November 2005 and August 2007 with source locations extending over a 650 km along-strike region from northern California to northern Oregon. We find complex tremor migration patterns with periods of steady migration (4-10 km/d), halting, and frequent along-strike jumps (30-400 km) in activity. The initiation and termination points of laterally continuous tremor activity appear to be repeatable features between NVT episodes which support the hypothesis of segmentation within the ETS zone. The overall distribution of NVT epicenters occur within a narrow band primarily confined by the surface projections of the 30 and 40 km contours of the subducting plate interface. We find as much as 50 km spatial offset from the updip edge of the tremor source zone to the downdip edge of the thermally and geodetically defined transition zone, which may inhibit ETS from triggering earthquakes further updip. Intriguingly, NVT activity is spatially anticorrelated with local seismicity, suggesting the two processes are mutually exclusive. We propose that the transition in frictional behavior coupled with high pore fluid pressures in the ETS zone favor tremor generation instead of regular interplate seismicity and frequent ETS produces a semicontinuous relaxation of strain within the overriding and subducting plates that further inhibit seismogenesis surrounding the ETS source region.Citation: Boyarko, D. C., and M. R. Brudzinski (2010), Spatial and temporal patterns of nonvolcanic tremor along the southern Cascadia subduction zone,
We have constructed an automated routine to identify prominent bursts of tectonic tremor and locate their source region during time periods of raised amplitude in the tremor passband. This approach characterizes 62 episodes of tectonic tremor between 2005 and 2011, with tremor epicenters forming a narrow band spanning the entire length of the Cascadia Subduction Zone. We find a range of along-strike lengths in individual episodes, but the length appears proportional to both duration and geodetic moment, consistent with proposed scaling laws for slow earthquake phenomena. Examination of individual episodes in detail reveals intriguing updip-downdip migration patterns, including slow updip migration during initiation and repetitive downdip migration between different episodes. The broader catalog of tremor episodes refines the inferences from earlier work that episodic tremor and slip is segmented along-strike and correlated with apparent seismogenic zone segmentation in most cases. The overall band of tremor is offset ~50 km from the downdip edge of interseismic coupling along the central and northern parts of the subduction zone. Along the southern part of the
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.