Oligonucleotides labeled with hexachlorofluorescein (hex) have enabled the interaction of the restriction endonuclease EcoRV with DNA to be evaluated using fluorescence anisotropy. The sensitivity of hex allowed measurements at oligonucleotide concentrations as low as 1 nM, enabling K(D) values in the low nanomolar range to be measured. Both direct titration, i.e., addition of increasing amounts of the endonuclease to hex-labeled oligonucleotides, and displacement titration, i.e., addition of unlabeled oligonucleotide to preformed hex-oligonucleotide/EcoRV endonuclease complexes, have been used for K(D) determination. Displacement titration is the method of choice; artifacts due to any direct interaction of the enzyme with the dye are eliminated, and higher fluorescent-labeled oligonucleotide concentrations may be used, improving signal-to-noise ratio. Using this approach (with three different oligonucleotides) we found that the EcoRV restriction endonuclease showed a preference of between 1.5 and 6.5 for its GATATC target sequence at pH 7.5 and 100 mM NaCl, when the divalent cation Ca2+ is absent. As expected, both the presence of Ca2+ and a decrease in pH value stimulated the binding of specific sequences but had much less effect on nonspecific ones.
Twenty‐nine recently introduced diploid (2n = 2x = 20) accessions of section Arachis plus an A. correntina (Burk) Krap. et Greg. nom. nud. control were hybridized to the diploid A‐genome species A. duranensis Krap. et Greg. nom. nud. (ace. 7988), the diploid B‐genome species A. batizocoi Krap. et Greg. (acc. 9484), and with two subspecies of the A‐B genome (2n = 4x = 40) A. hypogaea cultivars NC 4 and Argentine. Most attempted crosses were successful and the resulting plants were vigorous. However, A. batizocoi × accession 30008 hybrids died as seedlings and A. batizocoi × accession 30017 produced only dwarf plants. The 710 diploid F1s from A. batizocoi were generally sterile, while those from A. duranensis had fertility ranges from 5% to 84%. Meiotic chromosome relationships in diploid crosses were cytologically evaluated in 185 plants plus tester accessions. Most taxa in section Arachis have an A genome, only A. batizocoi accessions have a B genome, a D genome is represented by accessions 30091 and 30099, and two other genomic groups, represented by accessions 30011 and 30033, may be present in the section. Most cytological differentiation was found among species originally collected in southern and eastern Bolivia. On the other hand, species collected at the extremes of the distribution of section Arachis species (northern Argentina to north‐central Brazil) were cytologically very similar. Evidence is presented for speciation in Arachis being associated with both genetic differentiation and with translocated chromosomes. All taxa in the section except the D‐genome species are believed to be cross‐compatible with A. hypogaea, so germplasm introgression from most Arachis species should be possible.
Topoisomerases (topos) maintain DNA topology and influence DNA transaction processes by catalysing relaxation, supercoiling and decatenation reactions. In the cellular milieu, division of labour between different topos ensures topological homeostasis and control of central processes. In Escherichia coli, DNA gyrase is the principal enzyme that carries out negative supercoiling, while topo IV catalyses decatenation, relaxation and unknotting. DNA gyrase apparently has the daunting task of undertaking both the enzyme functions in mycobacteria, where topo IV is absent. We have shown previously that mycobacterial DNA gyrase is an efficient decatenase. Here, we demonstrate that the strong decatenation property of the enzyme is due to its ability to capture two DNA segments in trans. Topo IV, a strong dedicated decatenase of E. coli, also captures two distinct DNA molecules in a similar manner. In contrast, E. coli DNA gyrase, which is a poor decatenase, does not appear to be able to hold two different DNA molecules in a stable complex. The binding of a second DNA molecule to GyrB/ParE is inhibited by ATP and the non-hydrolysable analogue, AMPPNP, and by the substitution of a prominent positively charged residue in the GyrB N-terminal cavity, suggesting that this binding represents a potential T-segment positioned in the cavity. Thus, after the GyrA/ParC mediated initial DNA capture, GyrB/ParE would bind efficiently to a second DNA in trans to form a T-segment prior to nucleotide binding and closure of the gate during decatenation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.