Settlement trials conducted with larvae of crown-of-thorns starfish Acanthaster planci revealed a moderate degree of substratum specif~c~ty. Highest rates of settlement and metamorphosis occurred on coral rubble and the crustose coralline alga (CCA) Lithothamnlum pseudosorum, but rates were more vanable on the coralline. Interpretation of settlement on the rubble is difficult because rubble always supported some CCA. Settlement was sigmflcantly lower on other CCA (Porolithon onkodes and Neogoniolithon foslei), non-calcareous crustose red algae (Peyssonellia sp.), and fouled ceramic tdes. These results were consistent irrespective of whether larvae were offered a choice of substrata or not. When larvae were separated from L. pseudosorum by mesh, settlement was highly variable but sometimes occurred at high rates, suggesting that contact with the algae is not obligatory for induction. Larvae were not induced to settle by GABA (y-amino butync acid), elevated K' concentrations, or coral blocks fouled for 9 d, and settlement rates were virtually zero in controls without a known added inducer. Treatment of highly inductive shards of L. pseudosorum with antibiotics reduced their Inductive activlty to low levels, suggeslng that induction of settlement and metamorphosis of A. planci by L. pseudosorum may b e mediated by epiphytic bacteria. Other results were consistent with the notion of bacteria-mediated induction. The inductive ability of different regions on individual L. pseudosorum plants varied greatly, a s did densities of bacteria on the plant surface. Larvae always settled on sections of thallus having high densities of bacteria, but never on adjacent areas where epiphytic bacteria were sparse. The inductive stimulus is llkely to be chem~cal since it was inactivated by boiling or autoclaving, and may be a relatively large molecule since ~t was not detected in water, ethanol or chloroform extracts of lnductlve algae or coral rubble, and was retained by dialysis tubing of pore size 10000 Daltons. The spatlal distribution of coral rubble and L. pseudosorum on and around GBR midshelf reefs, the location of hydrodynamic retention cells around reefs, and the pattern of outbreaks on the GBR, suggest that mass settlements of A. planci are more likely to occur in deep than in shallow water. This would explain the paradox that outbreaks of A. planci on the GBR are not heralded by increases in abundances of juveniles in shallow water, but are first observed as adult starfish ascending from deepwater Prehminary deep water videotransects off Davies Reef showed that rubble and CCA were abundant m deep water (30 to 65 m) adjacent to the area where aggregations of adult starfish were first seen movlng up from deep water, but the substratum in deep water off other sections of the reef was sand.
Abstract. Increased levels of nitrate occur in natural waters due to pollution, and in aquaculture systems from nitrification and addition of microalgal cultures for feeding. Static bioassays showed that significant mortality of larval Penaeus monodon (Fabricius) occurred within 40 h at nitrate concentrations as tow as 1 mg NO~-1-1. Sublethal effects of this concentration resulted in changes to ganglionic neuropiles and muscles. At higher concentrations (10 and 100 mg NO;-1-1), additional tissues were affected including the hypodermis, midgut and proventriculus. This is the first report of toxicity to a marine organism of nitrate at concentrations normally present in enclosed seawater and mariculture systems. The results are discussed in terms of management of culture systems and of natural marine ecosystems containing elevated levels of nitrate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.