Microwaves are used as a processing alternative for the electrical activation of ion implanted dopants and the repair of ion implant damage within silicon. Rutherford backscattering spectra demonstrate that microwave heating reduces the damage resulting from ion implantation of boron or arsenic into silicon. Cross-section transmission electron microscopy and selective area electron diffraction patterns demonstrate that the silicon lattice regains nearly all of its crystallinity after microwave processing of arsenic implanted silicon. Sheet resistance readings indicate the time required for boron or arsenic electrical activation within implanted silicon. Hall measurements demonstrate the extent of dopant activation after microwave heating of implanted silicon. Physical and electrical characterization determined that the mechanism of recrystallization in arsenic implanted silicon is solid phase epitaxial regrowth. The boron implanted silicon samples did not result in enough lattice damage to amorphize the silicon lattice and resulted in low boron activation during microwave annealing even though recrystallization of the Si lattice damage did take place. Despite low boron activation levels, the level of boron activation in this work was higher than that expected from traditional annealing techniques. The kinetics of microwave heating and its effects on implanted Si are also discussed.
Doppler-free two-photon spectroscopy has been used to investigate the transitions n2S ← 42S (n = 6 to 55) and n2D3/2.5/2 ← 42S (n = 5 to 50) of 39K. Wavelengths of these transitions have been measured to an accuracy of 1 part in 107, and term values, quantum defects, fine structure splittings, and isotope shifts have been evaluated. The value of the ionization limit determined from these measurements is 35 009.8232 ± 0.0010 cm−1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.