Prorenin stimulates decidual prostaglandin (PG) production in vitro, the (pro)renin receptor ((P)RR) may mediate this action. The role of prorenin in amnion PG synthesis has not been examined, despite this being the key site of PG synthesis. To determine if (P)RR, prorenin and PGHS-2 are co-localized in gestational tissues and if expression is altered by labour, term amnion, chorion, decidua and placenta were collected during elective caesarean section or after spontaneous labour. Prorenin, (P)RR and PGHS-2 mRNA abundance was determined by real-time RT-PCR. (P)RR protein was examined by immunohistochemistry. The effect of recombinant human (rh) prorenin on PGHS-2 mRNA abundance in amnion explants was determined. Prorenin and (P)RR mRNA were highest in decidua and placenta, respectively. Decidual prorenin, (P)RR and placental (P)RR mRNA abundance decreased with labour. (P)RR protein was present in all gestational tissues. After labour, decidual prorenin was positively correlated with amnion PGHS-2 mRNA and rh-prorenin significantly increased PGHS-2 mRNA abundance in amnion explants. We conclude that the decidua is the principal source of prorenin and is downregulated with labour. All gestational tissues are targets for prorenin. Decidual prorenin may be involved in the labour-associated increase in amnion PGHS-2 abundance via the (P)RR.
Testicular cell proliferation and differentiation is critical for development of normal testicular function and male reproductive maturity. The objective of the current study was to evaluate histoarchitecture and expression of genes marking specific cells and important functions as well as testosterone production of the developing goat testes. Testes were harvested from Alpine bucks at 0, 2, 4, 6, and 8 mo of age (n = 5/age group). Paired testes weight increased from 2 to 4 (P < 0.001) and 4 to 6 mo (P < 0.01). The greatest increases in seminiferous tubule and lumen diameters and height of the seminiferous epithelium occurred between 2 and 4 mo (P < 0.001). Genes expressed in haploid germ cells (Protamine1 [PRM1], Outer Dense Fiber protein 2 [ODF2], and Stimulated by Retinoic Acid gene 8 [STRA8]) increased dramatically at the same time (P < 0.001). Expression of other genes decreased (P < 0.05) during testicular maturation. These genes included P450 side chain cleavage (CYP11A1), Sex determining region Y-box 9 (SOX9), Insulin-like Growth Factor 1 Receptor (IGF1R), and Heat Shock Protein A8 (HSPA8). The Glutathione S-Transferase A3 (GSTA3) gene, whose product was recently recognized as a primary enzyme involved in isomerization of androstenedione in man and livestock species including goats, sheep, cattle, pigs, and horses, uniquely peaked in expression at 2 mo (P < 0.05). Follicle-Stimulating Hormone Receptor (FSHR) mRNA abundance tended to steadily decrease with age (P = 0.1), while Luteinizing Hormone Receptor (LHCGR) mRNA abundance in testes was not significantly different across the ages. Testosterone content per gram of testicular tissue varied among individuals. However, testosterone content per testis tended to increase at 6 mo (P = 0.06). In conclusion, major changes in cellular structure and gene expression in goat testes were observed at 4 mo of age, when spermatogenesis was initiated. Male goats mature rapidly and represent a good model species for the study of agents that enhance or impair development of testicular functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.