An elliptic computational fluid dynamics wake model based on the actuator disk concept is used to simulate a wind turbine, approximated by a disk upon which a distribution of forces, defined as axial momentum sources, is applied on an incoming non-uniform shear flow. The rotor is supposed to be uniformly loaded with the exerted forces estimated as a function of the incident wind speed, thrust coefficient and rotor diameter. The model is assessed in terms of wind speed deficit and added turbulence intensity for different turbulence models and is validated from experimental measurements of the Sexbierum wind turbine experiment.The elliptic model is also compared with other wake models in the literature on the basis of parabolic and large eddy simulation approximations.
We present a Computational Fluid Dynamics (CFD) modeling strategy for onshore wind farms aimed at predicting and opti- mizing the production of farms using a CFD model that includes meteorological data assimilation, complex terrain and wind turbine effects. The model involves the solution of the Reynolds-Averaged Navier-Stokes (RANS) equations together with a k-ɛ turbulence model specially designed for the Atmospheric Boundary Layer (ABL). The model involves automatic meshing and generation of boundary conditions with atmospheric boundary layer shape for the entering wind flow. As the integration of the model up to the ground surface is still not viable for complex terrains, a specific law of the wall including roughness effects is implemented. The wake effects and the aerodynamic behavior of the wind turbines are described using the actuator disk model, upon which a volumetric force is included in the momentum equations. The placement of the wind turbines and a mesh refinement for the near wakes is done by means of a Chimera method. The model is implemented in Alya, a High Performance Computing (HPC) multi physics parallel solver based on finite elements and developed at Barcelona Supercomputing Center.The research of G. Houzeaux is being partly done under a I3 contract with the Spanish Ministerio de Ciencia e Inovación. The work of B. Eguzkitza is financed by a scholarship from the Fundación IBERDROLA supporting\ud
the project ”Optimization of wind farms using computational fluid dynamics”.Peer ReviewedPostprint (published version
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.