The ease of a metal to deform plastically in selected crystallographic planes depends on the core structure of its dislocations. As the latter is controlled by electronic interactions, metals with the same valence electron configuration usually exhibit a similar plastic behaviour. For this reason, titanium and zirconium, two transition metals of technological importance from the same column of the periodic table, have so far been assumed to deform in a similar fashion. However, we show here, using in situ transmission electron microscopy straining experiments, that plasticity proceeds very differently in these two metals, being intermittent in Ti and continuous in Zr. This observation is rationalized using first-principles calculations, which reveal that, in both metals, dislocations may adopt the same set of different cores that are either glissile or sessile. An inversion of stability of these cores between Zr and Ti is shown to be at the origin of the profoundly different plastic behaviours.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.