Continuum robots, which are composed of multiple concentric, precurved elastic tubes, can provide dexterity at diameters equivalent to standard surgical needles. Recent mechanics-based models of these “active cannulas” are able to accurately describe the curve of the robot in free space, given the preformed tube curves and the linear and angular positions of the tube bases. However, in practical applications, where the active cannula must interact with its environment or apply controlled forces, a model that accounts for deformation under external loading is required. In this paper, we apply geometrically exact rod theory to produce a forward kinematic model that accurately describes large deflections due to a general collection of externally applied point and/or distributed wrench loads. This model accommodates arbitrarily many tubes, with each having a general preshaped curve. It also describes the independent torsional deformation of the individual tubes. Experimental results are provided for both point and distributed loads. Average tip error under load was 2.91 mm (1.5%–3% of total robot length), which is similar to the accuracy of existing free-space models.
The dynamic equations of many continuum and soft robot designs can be succinctly formulated as a set of partial differential equations (PDEs) based on classical Cosserat rod theory, which includes bending, torsion, shear, and extension. In this work we present a numerical approach for forward dynamics simulation of Cosserat-based robot models in real time. The approach implicitly discretizes the time derivatives in the PDEs and then solves the resulting ordinary differential equation (ODE) boundary value problem (BVP) in arc length at each timestep. We show that this strategy can encompass a wide variety of robot models and numerical schemes in both time and space, with minimal symbolic manipulation required. Computational efficiency is gained owing to the stability of implicit methods at large timesteps, and implementation is relatively simple, which we demonstrate by providing a short MATLAB-coded example. We investigate and quantify the tradeoffs associated with several numerical subroutines, and we validate accuracy compared with dynamic rod data gathered with a high-speed camera system. To demonstrate the method’s application to continuum and soft robots, we derive several Cosserat-based dynamic models for robots using various actuation schemes (extensible rods, tendons, and fluidic chambers) and apply our approach to achieve real-time simulation in each case, with additional experimental validation on a tendon robot. Results show that these models capture several important phenomena, such as stability transitions and the effect of a compressible working fluid.
Mechanics-based models of concentric tube continuum robots have recently achieved a level of sophistication that makes it possible to begin to apply these robots to a variety of real-world clinical scenarios. Endonasal skull base surgery is one such application, where their small diameter and tentacle like dexterity are particularly advantageous. In this paper we provide the medical motivation for an endonasal surgical robot featuring concentric tube manipulators, and describe our model-based design and teleoperation methods, as well as a complete system incorporating image-guidance. Experimental demonstrations using a laparoscopic training task, a cadaver reachability study, and a phantom tumor resection experiment illustrate that both novice and expert users can effectively teleoperate the system, and that skull base surgeons can use the robot to achieve their objectives in a realistic surgical scenario.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.