In many cancer cells the alteration of glycosylation processes leads to the expression of cryptic carbohydrate moieties, which make them good targets for immune intervention. Identification of cancer-associated glycotopes as well as progress in chemical synthesis have opened up the way for the development of fully synthetic immunogens that can induce anti-saccharide immune responses. Here, we synthesized a dendrimeric multiple antigenic glycopeptide (MAG) containing the Tn Ag O-linked to a CD4+ T cell epitope. This MAG is based on three consecutive Tn moieties (tri-Tn) corresponding to the glycotope recognized by an mAb (MLS 128) produced against the LS180 colon carcinoma cell line. The Abs induced by this MAG recognized murine and human tumor cell lines expressing the Tn Ag. Prophylactic vaccination using MAG provided protection of mice against tumor challenge. When used in active specific immunotherapy, the MAG carrying the tri-Tn glycotope was much more efficient than the mono-Tn analogue in promoting the survival of tumor-bearing mice. Furthermore, in active specific immunotherapy, a linear glycopeptide carrying two copies of the tri-Tn glycotope was shown to be poorly efficient compared with the dendrimeric MAG. Therefore, both the clustering of carbohydrate Ags and the way they are displayed seem to be important parameters for stimulating efficient anti-saccharide immune responses.
Using synthetic Tn (GalNAc-O-Ser/Thr) glycopeptide models and a biosensor based on surface plasmon resonance spectroscopy we have determined that isolectin B4 from Vicia villosa (VVLB4) binds to one Tn determinant whereas the antiTn monoclonal antibodies 83D4 and MLS128 require at least two Tn residues for recognition. When an unglycosylated amino acid is introduced between the Tn residues, both antibodies do not bind. MLS128 affinity was higher on a glycopeptide with three consecutive Tn residues. These results indicate that Tn residues organized in clusters are essential for the binding of these antibodies and indicate a different Tn recognition pattern for VVLB4.z 2000 Federation of European Biochemical Societies.
Glycopeptides containing a tumor-associated carbohydrate antigen (mono-, tri- or hexa-Tn antigen) as a B-cell epitope and a CD4+ T-cell epitope (PV: poliovirus or TT: tetanus toxin) were prepared for immunological studies. Several Tn antigen residues [FmocSer/Thr (alpha-GalNAc)-OH] were successively incorporated into the peptide sequence with unprotected carbohydrate groups. The tri- and hexa-Tn glycopeptides were recognized by MLS128, a Tn-specific monoclonal antibody. The position of the tri-Tn motif in the peptide sequence and the peptide backbone itself do not alter its antigenicity. As demonstrated by both ELISA and FACS analysis, the glycopeptides induced high titers of anti-Tn antibodies in mice, in the absence of a carrier molecule. In addition, the generated antibodies recognized the native Tn antigen on cancer cells. The antibody response obtained with a D-(Tn3)-PV glycopeptide containing three alpha-GalNAc-D-serine residues is similar that obtained with the Tn6-PV glycopeptide. These results demonstrate that short synthetic glycopeptides are able to induce anticancer antibody responses.
Catecholamine, histamine, and adenosine-mediated accumulations of radioactive cyclic AMP were assessed in adenine-labeled slices from eight rat brain regions. 2-Fluoronorepinephrine, a selective beta-adrenergic agonist, elicited an an accumulation of cyclic AMP in cerebral cortex, cerebellum, hippocampus, striatum, superior colliculi, thalamus, hypothalamus, and medulla-pons. In cerebral cortex and most other brain regions, the beta-adrenergic-mediated response appeared to involve primarily beta 1-adrenergic receptors, while in cerebellum, there was a significant involvement of beta 2-adrenergic receptors. 6-Fluoronorepinephrine, a selective alpha-adrenergic agonist, elicited accumulations of cyclic AMP in all regions except cerebellum. Combinations of the two fluoro derivatives afforded in all brain regions an accumulation of cyclic AMP identical with that elicited by norepinephrine. In hypothalamus, the alpha- and beta-adrenergic responses were significantly greater than additive. In cerebral cortex, the alpha-adrenergic receptor-mediated response appeared to involve alpha 1-adrenergic receptors and to be nearly completely dependent on adenosine, while in other brain regions, the dependence of the alpha-adrenergic response on adenosine was less or absent. Combinations of 6-fluoronorepinephrine and histamine had greater than additive effects in cortex and hippocampus. The results indicate that the interactive control of cyclic AMP-generating systems by alpha-adrenergic, beta-adrenergic, adenosine, and histamine receptors differs significantly among rat brain regions.
Substitution of fluorine for hydrogen in position 2, 5, or 6 of the aromatic ring of norepinephrine markedly alters the alpha- and beta-adrenergic agonist properties of norephinephrine. The 6-fluoro isomer is an beta-adrenergic agonist with virtually no beta agonist activity, while the 2-fluoro isomer is a beta-adrenergic agonist with little alpha activity. The 5-fluoro isomer is equipotent with norepinephrine as an alpha agonist and significantly more potent as a beta agonist. The possible physiochemical basis for these differences is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.