In the territory of Altomonte, a village located in Calabria, in the Southern part of Italy, a new thermoelectrical station is under construction. This work involved major earthworks which regarded new excavated slopes. In order to protect soil from erosion due to rainfall and runoff and also in order to prevent superficial soil instability, it was decided to plant four different species of perennial ''gramineae'' plants (Eragrass, Elygrass, Pangrass and Vetiver) characterised by deep roots. Works began in November 2002 and ended in May 2003, a period marked by very different climate and meteorological conditions, varying from exceptionally rainy and cold winter to warm and dry spring months. The paper describes the different stages of the project and the monitoring programme for the following months. The extension of the work and the use of four different kinds of vegetation made periodic inspections of the entire site appropriate. Two in situ investigations, respectively performed in August 2003 and in November 2003, are outlined. The aim of these surveys was to confirm the success of the work by verifying the growth of the plants and roots. The principal monitored parameters were the percentage of sprouted plants, the height of the foliage and the depth of roots. The investigations showed good results, keeping in mind the very difficult climatic conditions and the extreme poor fertility of the topsoil laid down upon the clay layer: in particular, high survival rate were measured over the entire area of the works and the root systems have developed sufficiently to grow through the upper topsoil layer (0.2-0.3 m) into the underlying clay layer. In March 2004, a sampling programme was undertaken on the same site. Direct shear tests were carried out in the laboratory in order to evaluate the increase in shear strength of the rooted soil mass. The research involved the recovery of three undisturbed samples of soil with roots for each of the four types of ''gramineae'' plants and three undisturbed samples constituted only of soil, from the surface to a depth of 1.0 m. The tests were performed in a large direct shear apparatus on 200 mm diameter samples. The test results allowed to evaluate the roots' contribution of the different gramineous species and to underline the direct correlation between the increase in soil shear strength and the root tensile strengths. In particular, an increase in cohesion ranging between 2 kPa and 15 kPa was recorded, according to the different species: the maximum values of increase in shear strength were reached by Vetiver roots, which are also characterised by the highest tensile strength.
In Italy, since early times, the environmental aspects have always been a key issue on the design and the application. Consequently, the geosynthetic reinforced soil structures consist of vegetated face steep slopes. Furthermore, the use of vegetation has also been recognized and incorporated in engineering practice for erosion control and for stabilization of shallow slopes. Vegetation influences slope stability and erosion process by both mechanical effects and hydrological effects. In particular, in the paper, the mechanical effects of vegetation related to soil stabilization will be described. The purpose of this paper is to present the specific role of vegetation in soil reinforcement applications, by means of the analysis of the available literature on the (i) factors affecting root reinforcement of soil, (ii) experimental tests carried out on roots and on roots-soil system, and (iii) analytical and theoretical models. The erosion applications will not treated in this paper. The use of vegetation in civil engineering and landscape works has grown in importance, even if the specific design standard concerning the use of vegetation for slope stabilization is still under discussion. Therefore, design and management of stabilization systems by plants require an accurate knowledge about the quantitative reinforcing root effects on soil strength.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.