Abstract-Most methods of fuzzy rule-based system identification (SI) either ignore feature analysis or do it in a separate phase. This paper proposes a novel neuro-fuzzy system that can simultaneously do feature analysis and SI in an integrated manner. It is a five-layered feed-forward network for realizing a fuzzy rule-based system. The second layer of the net is the most important one, which along with fuzzification of the input also learns a modulator function for each input feature. This enables online selection of important features by the network. The system is so designed that learning maintains the nonnegative characteristic of certainty factors of rules. The proposed network is tested on both synthetic and real data sets and the performance is found to be quite satisfactory. To get an "optimal" network architecture and to eliminate conflicting rules, nodes and links are pruned and then the structure is retrained. The pruned network retains almost the same level of performance as that of the original one.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.