Distributed secondary gas injection via a fractal injector was studied in a lab-scale 3-D fluidized bed to determine its effect on bubble size, bubble fraction, residence time, mixing, and conversion. The experimental results indicate improved reactor performance and are consistent with earlier work in 2-D beds. A model was developed based on simple two-phase theory that describes the effect of distributed secondary injection on the performance of ozone decomposition in a bubbling fluidized bed. The model was used to predict the performance of a reactor for the production of maleic anhydride from n-butane, which includes consecutive and side reactions. The results showed that the production and selectivity of maleic anhydride were significantly improved. It can be concluded that distributed secondary gas injection improves the mass transfer and gassolid contact, which results in increased reactor performance. It likely achieves these improvements by enhanced gas flow through the dense phase and more micromixing around the injection points, which causes greater interaction between the phases. Some aspects of applying this technology in industry are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.