A new spreadsheet is presented, to be used as part of the Band model for estimating potential avian mortality due to wind turbine strike. The spreadsheet extends the Band collision risk spreadsheet by allowing for oblique approach angles and wind speed. The differences in the results between this new spreadsheet and the standard Band spreadsheet are given for two species, the white-tailed eagle Haliaeetus albicilla and the South Island pied oystercatcher Haematopus finschi, chosen for their contrasting sizes and flight characteristics. Under more representative conditions, the true risk for large birds is shown to be substantially greater than that calculated by the Band spreadsheet. Examples of how to use the new spreadsheet with bird survey and wind data are given.
The large blades required in the last low pressure stages of modern turbines of 350 MW and above makes them more susceptible to erosion by wet steam owing to the increase in blade tip velocity. A specially developed periscope combined with a cine camera has been used for viewing inside an operating turbine to record the flow of water over the fixed blades and the subsequent formation and stripping of the water drops which then impact on the moving blades causing erosion. The drops had a maximum diameter of 450 /mi and the estimated total mass of the drops impacting on the blades was only a few per cent of the mass flow of water condensed from the steam. This confirms that the condensed steam forms a fog of droplets which are so small that only a very small proportion of them is captured by the turbine surfaces to produce large drops capable of causing erosion. In addition to the direct practical value of these observations, the data provide background information in support of the high speed photographic studies of the drop-forming processes on a blade cascade in the laboratory. Experiments in a steam tunnel in which the turbine low pressure steam conditions can be simulated, indicate that drops of 350 to 1600 /xm leave the trailing edge of a blade and accelerate to a maximum velocity of 70 ft./s over a distance of about 1 in. in the blade wake. They are then caught in the main steam flow, which has a velocity of up to 1200 ft./s, where they are broken up and rapidly accelerated. Analysis of the cine films of observations in a turbine and in the steam tunnel gives the velocities and sizes of the drops causing turbine blade erosion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.