Cascading failure in electric power systems is a complicated problem for which a variety of models, software tools, and analytical tools have been proposed but are difficult to verify. Benchmarking and validation are necessary to understand how closely a particular modeling method corresponds to reality, what engineering conclusions may be drawn from a particular tool, and what improvements need to be made to the tool in order to reach valid conclusions. The community needs to develop the test cases tailored to cascading that are central to practical benchmarking and validation. In this paper, the IEEE PES working group on cascading failure reviews and synthesizes how benchmarking and validation can be done for cascading failure analysis, summarizes and reviews the cascading test cases that are available to the international community, and makes recommendations for improving the state of the art.
In-depth security analyses of power systems (PSs) require to consider the vulnerabilities to natural and human-related threats, which may cause multiple dependent contingencies. On the other hand, such events often lead to high impact on the system, so that decision-making aimed to enhance security may become difficult. Introducing the uncertainty, the risk associated to each contingency can be evaluated, thus allowing to perform effective contingency ranking. This paper describes an in-depth security assessment methodology, based on an ``extended'' definition of risk (including threats, vulnerability, contingency, and impact) aimed to perform the risk assessment of the integrated power and Information and Communication Technology (ICT) systems. The results of the application to test cases and realistic PSs show the added value of the proposed approach with respect to conventional security analyses in dealing with uncertainty of threats, vulnerabilities, and system response
Various methodologies exist for assessing the risk of cascading outage in power systems, differing in the cascading mechanisms considered and in the way they are modeled. These methodologies can be classified in three groups: static computation (QSS methodologies), dynamic computation (dynamic methodologies), or a combination of both (hybrid methodologies). The objective of this paper is to benchmark the performance of several widely used QSS cascading outage methodologies. For that purpose, they are applied on a unique system, the RTS-96, and the results are compared. Several metrics and indicators are used for that comparison: expected demand loss, distribution of demand loss, distribution of lines outaged and critical lines. Results show common trends but also discrepancies between methodologies. It implies that there is not yet a standardized way to analyze the risk of cascading outage in power systems, and that the specific tool used by a power system engineer can impact the recommendations.
KeywordsCascading outage, Blackout, Power system security, Power system reliability, Risk analysis
RightsPersonal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Authors
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.