Studies aimed at elucidating the immunological and prognostic significance of HLA-DR expression on breast carcinoma cells have yielded contradictory results. To expand on previous studies, we have investigated the associations of tumor cell expression of HLA-DR and its related co-chaperones, invariant chain (Ii) and HLA-DM, with infiltrating inflammatory cells, in situ cytokine mRNA levels and prognosis and outcome in 112 breast carcinoma patients with a median follow-up of 59 months. While the majority of HLA-DR+ tumors co-express Ii, only a minority express HLA-DM. Tumor cell expression of HLA-DR and co-chaperones positively associated with both infiltrating CD4+ and CD8+ T-cell subsets (P < 0.01). Expression of HLA-DR and Ii associated with decreased estrogen receptor alpha levels and younger age at diagnosis, suggesting a role for hormones in the control of HLA class II expression in breast carcinoma. Patients with DR+Ii+DM- tumors had markedly decreased recurrence-free and disease-specific survival as compared with patients with DR+Ii+DM+ tumors (P < 0.05) and HLA-DR/co-chaperone expression was an independent predictor of survival by multivariate Cox regression analysis, controlling for standard prognostic indicators. Tumors that co-express HLA-DR, Ii and HLA-DM have increased levels of IFN-gamma, IL-2 and IL-12 mRNA, suggesting improved survival of patients with DR+Ii+DM+ tumors may be attributable to Th1-dominated immunity. We conclude that expression of determinants of the immune response by tumor cells may influence breast tumor progression and patient outcome.
The coordinate regulation of HLA class II (HLA-II) is controlled by the class II transactivator, CIITA, and is crucial for the development of anti-tumor immunity. HLA-II in breast carcinoma is associated with increased IFN-γ levels, reduced expression of the estrogen receptor (ER) and reduced age at diagnosis. Here, we tested the hypothesis that estradiol (E2) and ERα signaling contribute to the regulation of IFN-γ inducible HLA-II in breast cancer cells. Using a panel of established ER− and ER+ breast cancer cell lines, we showed that E2 attenuated HLA-DR in two ER+ lines (MCF-7 and BT-474), but not in T47D, while it augmented expression in ER− lines, SK-BR-3 and MDA-MB-231. To further study the mechanism(s), we used paired transfectants: ERα+ MC2 (MDA-MB-231 c10A transfected with the wild type ERα gene) and ERα− VC5 (MDA-MB-231 c10A transfected with the empty vector), treated or not with E2 and IFN-γ. HLA-II and CIITA were severely reduced in MC2 compared to VC5 and were further exacerbated by E2 treatment. Reduced expression occurred at the level of the IFN-γ inducible CIITA promoter IV. The anti-estrogen ICI 182,780 and gene silencing with ESR1 siRNA reversed the E2 inhibitory effects, signifying an antagonistic role for activated ERα on CIITA pIV activity. Moreover, STAT1 signaling, necessary for CIITA pIV activation, and selected STAT1 regulated genes were variably downregulated by E2 in transfected and endogenous ERα positive breast cancer cells, whereas STAT1 signaling was noticeably augmented in ERα− breast cancer cells. Collectively, these results imply immune escape mechanisms in ERα+ breast cancer may be facilitated through an ERα suppressive mechanism on IFN-γ signaling.
Certain oncolytic viruses exploit activated Ras signaling in order to replicate in cancer cells. Constitutive activation of the Ras/MEK pathway is known to suppress the effectiveness of the interferon (IFN) antiviral response, which may contribute to Ras-dependent viral oncolysis. Here, we identified 10 human cancer cell lines (out of 16) with increased sensitivity to the anti-viral effects of IFN-α after treatment with the MEK inhibitor U0126, suggesting that the Ras/MEK pathway underlies their reduced sensitivity to IFN. To determine how Ras/MEK suppresses the IFN response in these cells, we used DNA microarrays to compare IFN-induced transcription in IFN-sensitive SKOV3 cells, moderately resistant HT1080 cells, and HT1080 cells treated with U0126. We found that 267 genes were induced by IFN in SKOV3 cells, while only 98 genes were induced in HT1080 cells at the same time point. Furthermore, the expression of a distinct subset of IFN inducible genes, that included RIGI, GBP2, IFIT2, BTN3A3, MAP2, MMP7 and STAT2, was restored or increased in HT1080 cells when the cells were co-treated with U0126 and IFN. Bioinformatic analysis of the biological processes represented by these genes revealed increased representation of genes involved in the anti-viral response, regulation of apoptosis, cell differentiation and metabolism. Furthermore, introduction of constitutively active Ras into IFN sensitive SKOV3 cells reduced their IFN sensitivity and ability to activate IFN-induced transcription. This work demonstrates for the first time that activated Ras/MEK in human cancer cells induces downregulation of a specific subset of IFN-inducible genes.
Two class I major histocompatibility complex (MHC) proteins with molecular masses of 43- and 39-kDa were identified in the cell surface membranes of normal woodchucks using a newly developed antiwoodchuck class I monoclonal antibody (mAb) B1b.B9 and immunoblotting. B1b.B9 was generated by immunizing mice with viable woodchuck peripheral blood mononuclear cells and was selected for anti-class I MHC reactivity using a cellular enzyme-linked immunoassay, indirect immunofluorescence on tissue sections and flow cytofluorimetry. The distribution pattern of class I MHC antigen on woodchuck lymphoid cells was found to be similar to that reported in other species. Also, the antigen expression on normal woodchuck hepatocytes was comparable to that observed on normal human liver parenchymal cells; thus, the antigen was not detected on hepatocytes by staining of liver tissue sections, but was found by indirect immunofluorescence staining of isolated liver cells. Western blot analysis of the plasma membranes from normal woodchuck hepatocytes revealed the presence of a single species of class I MHC heavy chain protein with a molecular mass of 43-kDa, whereas splenocyte plasma membranes showed intense expression of a 43-kDa species, as well as the presence of a 39-kDa protein. The 39- and 43-kDa proteins were extracted with Triton X-114 to the hydrophobic protein phase, suggesting that they both contain a hydrophobic transmembrane domain. The data obtained indicate that the B1b.B9 identifies a nonpolymorphic epitope of woodchuck class I MHC heavy chains, providing an important reagent for the study of the pathogenesis of hepatitis B virus infection in a woodchuck model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.