Octavius®‐4D is a very effective device in radiotherapy treatment quality assurance (QA), due to its simple set‐up and analysis package. However, even if it is widely used, its main characteristics and criticalities were only partially investigated. Taking start from its commissioning, the aim of this work was to study the main dependencies of the device response. The outcome dependence was studied comparing results by different delivery techniques [Intensity Modulated Radiation Therapy, IMRT (n = 29) and RapidArc, RA (n = 15)], anatomical regions [15 head/neck, 19 pelvis and 10 pancreas] and linear accelerators [DHX (n = 14) and Trilogy (n = 30)]. Moreover, the agreement dependency on the section of the phantom was assessed. Plan evaluations obtained by 2D, 3D, and volumetric γ‐index (both local and global) were also compared. Generally, high dose gradient resulted critically managed by the assembly, with a smoother effect in RA technique. Worse agreements emerged in the 2D γ‐index vs those of 3D and volumetric (P < 0.001), that were instead statistically comparable in global metric (P > 0.300). Volumetric plan evaluation was coherent with the average of passing rates on the 3 phantom axes (r ≥ 0.9), but transversal section provided best agreements vs sagittal and coronal ones (P < 0.050). The three studied districts furnished comparable results (P > 0.050) while the two LINACs provided different agreements (P < 0.005). The study pointed out that the phantom transversal section better fits the planned dose distribution, so this should be accounted when a two‐dimensional evaluation is needed. Moreover, the major reliability of the 3D metric with respect to the 2D one, as it better agrees with the dosimetric evaluation on the whole volume, suggests that it should be preferred in a two‐dimensional evaluation. Better agreements, obtained with RA vs IMRT technique, confirm that Octavius®‐4D is specifically conceived for rotational delivery. Lastly, the assembly resulted sensitive to different technology.
The goal of establishing prompt localization of the malignant spread or recurrence of a tumor has found a powerful solution in the definition of follow-up protocols, which include the indication for CT scans on an annual or semiannual basis. In the case of long-surviving patients, however, this approach will lead to a considerable integrated dose level over a period of several years after recovery from the illness. Pathologies treated primarily by surgery and/or chemotherapy have been considered, not taking into account cancers treated with adjuvant or radical radiotherapy. Given that the most likely protocols for these cancers often call for total body scans, an estimation of the consequent effective and organ doses can be performed with acceptable accuracy. The data acquired from five centers have been collected and the related effective and organ doses calculated by means of IMPACT software. Use of the effective dose concept, however, has lately become the subject of criticism, and the recently proposed Effective Risk Model has therefore also been applied. The evaluated absolute additional risk of second tumor induction ranges between 0.1% and 10%, depending primarily on age and pathology. These results depict this additional risk as an issue of significant importance for clinical practice. A revision of follow-up and scan parameter protocols, as well as the introduction of new algorithms for dose reduction, could significantly improve the risk-benefit ratio for all the pathologies studied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.