In this work the thermal characteristics of cellulose samples with different structure were investigated. The samples were prepared by reacting the cellulose with ethanolic hydroxide solution. Depending on the time of alkaline treatment, the intensity of cellulose transformation differed. Starting from cellulose I structure, with the highest degree of crystallinity, the other samples consisted of mixed structures of cellulose I and II, or were completely transformed to cellulose II structure with the lowest degree of crystallinity. The thermal behaviour of the samples was studied by using a Perkin Elmer TGS-2 and DSC-2 instruments. The kinetic parameters of dehydration and degradation were determined from non-isothermal TG--data (Nitrogen-inert atmosphere and a heating rate of 20 deg/min). The thermal effects of water evolution (heating rate of 80 deg/min) of the cellulose samples were found to depend on the structural characteristics and the crystallinity of the samples. The activation energy and frequency factor were in correlation with the structural changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.