This review describes a new paradigm of electronics based on the spin degree of freedom of the electron. Either adding the spin degree of freedom to conventional charge-based electronic devices or using the spin alone has the potential advantages of nonvolatility, increased data processing speed, decreased electric power consumption, and increased integration densities compared with conventional semiconductor devices. To successfully incorporate spins into existing semiconductor technology, one has to resolve technical issues such as efficient injection, transport, control and manipulation, and detection of spin polarization as well as spin-polarized currents. Recent advances in new materials engineering hold the promise of realizing spintronic devices in the near future. We review the current state of the spin-based devices, efforts in new materials fabrication, issues in spin transport, and optical spin manipulation.
Electrically induced electron-spin polarization near the edges of a semiconductor channel was detected and imaged with the use of Kerr rotation microscopy. The polarization is out-of-plane and has opposite sign for the two edges, consistent with the predictions of the spin Hall effect. Measurements of unstrained gallium arsenide and strained indium gallium arsenide samples reveal that strain modifies spin accumulation at zero magnetic field. A weak dependence on crystal orientation for the strained samples suggests that the mechanism is the extrinsic spin Hall effect.
The electronic spin degrees of freedom in semiconductors typically have decoherence times that are several orders of magnitude longer than other relevant timescales. A solid-state quantum computer based on localized electron spins as qubits is therefore of potential interest. Here, a scheme that realizes controlled interactions between two distant quantum dot spins is proposed. The effective long-range interaction is mediated by the vacuum field of a high finesse microcavity. By using conduction-band-hole Raman transitions induced by classical laser fields and the cavity-mode, parallel controlled-not operations and arbitrary single qubit rotations can be realized. Optical techniques can also be used to measure the spin-state of each quantum dot. 03.67.Lx, 42.50.Dv, 03.65.Bz Within the last few years, quantum computation (QC) has developed into a truly interdisciplinary field involving the contributions of physicists, engineers, and computer scientists [1]. The seminal discoveries of Shor and others, both in developing quantum algorithms for important problems like prime factorization [2], and in developing protocols for quantum error correction (QEC) [3] and fault-tolerant quantum computation [4], have indicated the desirability and the ultimate feasibility of the experimental realization of QC in various quantum systems.The elementary unit in most QC schemes is a twostate system referred to as a quantum bit (qubit). Since QEC can only work if the decoherence rate is small, it is crucial to identify schemes where the qubits are well isolated from their environment. Ingenious schemes based on Raman-coupled low-energy states of trapped ions [5] and nuclear spins in chemical solutions [6] satisfy this criterion, in addition to providing methods of fast quantum manipulation of qubits that do not introduce significant decoherence. Even though these schemes are likely to provide the first examples of quantum information processing at 5-10 qubit level, they do not appear to be scalable to larger systems containing more than 100 qubits.Here, we propose a new scheme for quantum information processing based on quantum dot (QD) electron spins coupled through a microcavity mode. The motivation for this scheme is threefold: (1) a QC scheme based on semiconductor quantum dot arrays should be scalable to ≥ 100 coupled qubits; (2) recent experiments demonstrated very long spin decoherence times for conduction band electrons in III-V and II-VI semiconductors [7], making electron spin a likely candidate for a qubit; and (3) cavity-QED techniques can provide longdistance, fast interactions between qubits [8]. The QC scheme detailed below relies on the use of a single cavity mode and laser fields to mediate coherent interactions between distant QD spins. As we will show shortly, the proposed scheme does not require that QDs be identical and can be used to carry out parallel quantum logic operations [9].We note that a QC scheme based on electron spins in QDs have been previously proposed [10]: this scheme is based on local exchan...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.