Organelle genome fragmentation has been found in a wide range of eukaryotic lineages; however, its use in phylogenetic reconstruction has not been demonstrated. We explored the use of mitochondrial (mt) genome fragmentation in resolving the controversial suborder-level phylogeny of parasitic lice (order Phthiraptera). There are ∼5,000 species of parasitic lice in four suborders (Amblycera, Ischnocera, Rhynchophthirina and Anoplura), which infest mammals and birds. The phylogenetic relationships among these suborders are unresolved despite decades of studies. We sequenced the mt genomes of eight species of parasitic lice and compared them with 17 other species of parasitic lice sequenced previously. We found that the typical single-chromosome mt genome is retained in the lice of birds but fragmented into many minichromosomes in the lice of eutherian mammals. The shared derived feature of mt genome fragmentation unites the eutherian mammal lice of Ischnocera (family Trichodectidae) with Anoplura and Rhynchophthirina to the exclusion of the bird lice of Ischnocera (family Philopteridae). The novel clade, namely Mitodivisia, is also supported by phylogenetic analysis of mt genome and cox1 gene sequences. Our results demonstrate, for the first time, that organelle genome fragmentation is informative for resolving controversial high-level phylogenies.
Although fear conditioning has received extensive attention, little is known about the roles of social learning whereby an individual may learn and acquire the fear responses of another. The authors examined individually and socially mediated acquisition of fear and analgesia to the natural aversive stimulus of biting flies. Exposure to biting flies elicited in individual naive mice analgesia and active self-burying to avoid the flies. When exposed 24 hr later to flies whose biting parts were removed, but not to nonbiting house flies, these mice displayed conditioned analgesia and self-burying. This "one-trial" conditioned analgesia and avoidance was also acquired through social learning without direct individual experience with biting flies. Naive "observer" mice that witnessed other "demonstrator" mice being attacked by biting flies exhibited analgesia and self-burying 24 hr later to altered flies.
We have undertaken a detailed analysis of the biotransformation of five of the most therapeutically important benzimidazole anthelmintics - albendazole (ABZ), mebendazole (MBZ), thiabendazole (TBZ), oxfendazole (OxBZ) and fenbendazole (FBZ) - in Caenorhabditis elegans and the ruminant parasite Haemonchus contortus. Drug metabolites were detected by LC-MS/MS analysis in supernatants of C. elegans cultures with a hexose conjugate, most likely glucose, dominating for all five drugs. This work adds to a growing body of evidence that glucose conjugation is a major pathway of xenobiotic metabolism in nematodes and may be a target for enhancement of anthelmintic potency. Consistent with this, we found that biotransformation of albendazole by C. elegans reduced drug potency. Glucose metabolite production by C. elegans was reduced in the presence of the pharmacological inhibitor chrysin suggesting that UDP-glucuronosyl/glucosyl transferase (UGT) enzymes may catalyze benzimidazole glucosidation. Similar glucoside metabolites were detected following ex vivo culture of adult Haemonchus contortus. As a step towards identifying nematode enzymes potentially responsible for benzimidazole biotransformation, we characterised the transcriptomic response to each of the benzimidazole drugs using the C. elegans resistant strain CB3474 ben-1(e1880)III. In the case of albendazole, mebendazole, thiabendazole, and oxfendazole the shared transcriptomic response was dominated by the up-regulation of classical xenobiotic response genes including a shared group of UGT enzymes (ugt-14/25/33/34/37/41/8/9). In the case of fenbendazole, a much greater number of genes were up-regulated, as well as developmental and brood size effects suggesting the presence of secondary drug targets in addition to BEN-1. The transcriptional xenobiotic response of a multiply resistant H. contortus strain UGA/2004 was essentially undetectable in the adult stage but present in the L3 infective stage, albeit more muted than C. elegans. This suggests that xenobiotic responses may be less efficient in stages of parasitic nematodes that reside in the host compared with the free-living stages.
Parasite modification of host behaviour influences a number of critical responses, but little is known about the effects on host spatial abilities. This study examined the effects of infection with the intestinal trichostrongylid nematode, Heligmosomoides polygyrus, on spatial water maze learning by male laboratory mice, Mus musculus. In this task individual mice had to learn the spatial location of a submerged hidden platform using extramaze visual cues. Determinations of spatial performance were made on day 19 post-infection with mice that had been administered either 50 or 200 infective larvae of H. polygyrus. The infected mice displayed over 1 day of testing (6 blocks of 4 trials) significantly poorer acquisition and retention of the water maze task than either sham-infected or control mice, with mice that had received 200 infective larvae displaying significantly poorer spatial performance than individuals receiving 50 larvae. The decrease in spatial learning occurred in the absence of either any symptoms of illness and malaise, or any evident motor, visual and motivational impairments. It is suggested that in this single host system the parasitic infection-induced decrease in spatial learning arises as a side-effect of the host's immunological and neuromodulatory responses and represents a fitness cost of response to infection.
Although parasites are reported to alter host responses to predators, little is known about the neurochemical mechanisms involved. Using an odour preference test, we examined the effects of an acute, subclinical infection with the naturally occurring, single host, enteric protozoan parasite, Eimeria vermiformis, on the responses of male laboratory mice, Mus musculus, to a predator. Uninfected mice avoided the odour of a predatory cat, spending a minimal amount of time in a Y-maze in the vicinity of the cat odour. In contrast, mice infected with E. vermiformis, spent a significantly greater amount of time in the proximity of the cat odour, showing a reduced avoidance of the cat odour and a reduction in predator-induced fear or anxiety. This was not related to augmented opioid activity and decreased pain sensitivity in the infected mice, as neither treatment with the exogenous opiate, morphine, nor restraint stress-induced augmentation of endogenous opioid activity, had any significant effects on the responses of uninfected mice to cat odour. The altered responses of the infected mice to the cat odour were reduced by peripheral administration of the gamma-aminobutyric A (GABAA) antagonists, bicuculline and picrotoxin, but were not significantly affected by either the benzodiazepine antagonist, Ro 15-1788, the opiate antagonist, naloxone, or the excitatory amino acid, N-methyl-D-aspartate (NMDA) antagonist, MK-801. These results indicate that infection with E. vermiformis in mice reduces the avoidance of predator odour through neurochemical systems associated with anxiety involving, at least in part, GABAA receptor mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.