The hemicholinium-3 (HC-3) sensitive, high-affinity choline transporter (CHT) sustains cholinergic signaling via the presynaptic uptake of choline derived from dietary sources or from acetylcholinesterase (AChE)-mediated hydrolysis of acetylcholine (ACh). Loss of cholinergic signaling capacity is associated with cognitive and motor deficits in humans and in animal models. Whereas genetic elimination of CHT has revealed the critical nature of CHT in maintaining ACh stores and sustaining cholinergic signaling, the consequences of elevating CHT expression have yet to be studied. Using bacterial artificial chromosome (BAC)-mediated transgenic methods, we generated mice with integrated additional copies of the mouse Slc5a7 gene. BAC–CHT mice are viable, appear to develop normally, and breed at wild-type (WT) rates. Biochemical studies revealed a 2 to 3-fold elevation in CHT protein levels in the CNS and periphery, paralleled by significant increases in [3H]HC-3 binding and synaptosomal choline transport activity. Elevations of ACh in the BAC–CHT mice occurred without compensatory changes in the activity of either choline acetyltransferase (ChAT) or AChE. Immunohistochemistry for CHT in BAC–CHT brain sections revealed markedly elevated CHT expression in the cell bodies of cholinergic neurons and in axons projecting to regions known to receive cholinergic innervation. Behaviorally, BAC–CHT mice exhibited diminished fatigue and increased speeds on the treadmill test without evidence of increased strength. Finally, BAC–CHT mice displayed elevated horizontal activity in the open field test, diminished spontaneous alteration in the Y-maze, and reduced time in the open arms of the elevated plus maze. Together, these studies provide biochemical, pharmacological and behavioral evidence that CHT protein expression and activity can be elevated beyond that seen in wild-type animals. BAC–CHT mice thus represent a novel tool to examine both the positive and negative impact of constitutively elevated cholinergic signaling capacity.
Healthy cardiovascular function relies on a balanced and responsive integration of noradrenergic and cholinergic innervation of the heart. High-affinity choline uptake by cholinergic terminals is pivotal for efficient ACh production and release. To date, the cardiovascular impact of diminished choline transporter (CHT) expression has not been directly examined, largely due to the transporter's inaccessibility in vivo. Here, we describe findings from cardiovascular experiments using transgenic mice that bear a CHT genetic deficiency. Whereas CHT knockout (CHT(-/-)) mice exhibit early postnatal lethality, CHT heterozygous (CHT(+/-)) mice survive, grow, and reproduce normally and exhibit normal spontaneous behaviors. However, the CHT(+/-) mouse heart displays significantly reduced levels of high-affinity choline uptake accompanied by significantly reduced levels of ACh. Telemeterized recordings of cardiovascular function in these mice revealed tachycardia and hypertension at rest. After treadmill exercise, CHT(+/-) mice exhibited slower heart rate recovery, consistent with a diminished cholinergic reserve, a contention validated through direct vagal nerve stimulation. Echocardiographic and histological experiments revealed an age-dependent decrease in fractional shortening, increased left ventricular dimensions, and increased ventricular fibrosis, consistent with ventricular dysfunction. These cardiovascular phenotypes of CHT(+/-) mice encourage an evaluation of humans bearing reduced CHT expression for their resiliency in maintaining proper heart function as well as risk for cardiovascular disease.
The presynaptic, hemicholinium-3 sensitive, high-affinity choline transporter (CHT) supplies choline for acetylcholine (ACh) synthesis. In mice, a homozygous deletion of CHT (CHT−/−) leads to premature cessation of spontaneous or evoked neuromuscular signaling and is associated with perinatal cyanosis and lethality within 1 hr. Heterozygous (CHT+/−) mice exhibit diminished brain ACh levels and demonstrate an inability to sustain vigorous motor activity. We sought to explore the contribution of CHT gene dosage to motor function in greater detail using transgenic mice where CHT is expressed under control of the motor neuron promoter Hb9 (Hb9:CHT). On a CHT−/− background, the Hb9:CHT transgene conferred mice with the ability to move and breath for a postnatal period of ~24 hrs, thus increasing survival. Conversely, Hb9:CHT expression on a wild-type background (CHT+/+;Hb9:CHT) leads to an increased capacity for treadmill running compared to wild-type littermates. Analysis of the stimulated compound muscle action potential (CMAP) in these animals under basal conditions established that CHT+/+;Hb9:CHT mice display an unexpected, bidirectional change, producing either elevated or reduced CMAP amplitude, relative to CHT+/+ animals. To examine whether these two groups arise from underlying changes in synaptic properties, we used high-frequency stimulation of motor axons to assess CMAP recovery kinetics. Although CHT+/+;Hb9:CHT mice in the two groups display an equivalent, time-dependent reduction in CMAP amplitude, animals with a higher basal CMAP amplitude demonstrate a significantly enhanced rate of recovery. To explain our findings, we propose a model whereby CHT support for neuromuscular signaling involves contributions to ACh synthesis as well as cholinergic synaptic vesicle availability.
Choline acetyltransferase (CAT), which serves as a marker for the preganglionic and postganglionic parasympathetic cholinergic neurons in heart, was measured in heart regions in rats and guinea pigs after either a right or a left unilateral cervical vagotomy or a sham operation. One day after a left vagotomy in rat, CAT activity was decreased in the region of the SA and AV nodes. In rats killed on the 2nd, 4th, and 8th day after left vagotomy, the activity of CAT in these regions increased to the control level. CAT activity in the remainder of the heart did not decrease. In guinea pig 1 wk after a left vagotomy, CAT activity was decreased in the anterior interventricular septum but not in other regions. Selective increases in enzyme activity were noted in the right atrial appendage following left vagotomy and in the superior interventricular septum following right vagotomy. These results suggest that compensatory increases in CAT activity occur that may be related to collateral sprouting similar to that observed in the frog heart.
A liquid chromatographic assay was used to determine the choline and acetylcholine concentrations in the four chambers of rat hearts 2, 4, and 8 days after transplantation into an abdominal site. Corresponding measurements were made in the hearts of host rats. We found regional cardiac acetylcholine concentrations in controls follow the nonuniform pattern seen with choline acetyltransferase (CAT) activity, being highest in the atria (8-12 nmol/g) and lower in the ventricles (0.7-1.6 nmol/g). Following transplantation, acetylcholine levels decreased significantly only in the right ventricle after 8 days. Following a unilateral vagotomy (random, left or right), acetylcholine concentrations in the distal portion of the severed nerve decreased to half the value of the intact contralateral side by 4 days. The continued presence of acetylcholine, despite significantly reduced CAT activity in the severed nerve and transplanted heart, suggests that acetylcholine is preserved, perhaps by vesiculation in nonstimulated postganglionic terminals. The localized decrease in acetylcholine in the right ventricle after 8 days suggests that transplantation may interrupt the postganglionic fibers to this area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.