[1] We present results of a survey of the nightside ionosphere of Mars as observed by Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) on board the Mars Express spacecraft. The occurrence rate of the nightside ionosphere is studied as a function of solar zenith angle (SZA), magnetic field magnitude, and magnetic field inclination. It is shown that at locations with weak crustal magnetic fields the occurrence rate of the nightside ionosphere decreases with increasing SZA up to about 125°, suggesting that plasma transport from the dayside plays a crucial role in its formation. However, at locations with strong crustal magnetic fields, the dependence on SZA is no longer apparent and the inclination of magnetic field becomes a crucial parameter: the occurrence rate of the nightside ionosphere is more than 4 times larger at locations with nearly vertical magnetic fields as compared to the locations with nearly horizontal magnetic fields. This indicates that impact ionization by precipitating electrons is the main ionization source at these locations. Observed peak electron densities are less than 2 × 10 4 cm −3 in the vast majority of cases. Lower estimates of altitudes of peak electron densities are mostly between 100 and 150 km.
[1] We present a novel method for the automatic retrieval of local plasma density measurements from the Mars advanced radar for subsurface and ionospheric sounding (MARSIS) active ionospheric sounder (AIS) instrument. The resulting large data set is then used to study the configuration of the Martian ionosphere at altitudes above 300 km. An empirical calibration routine is used, which relates the local plasma density to the measured intensity of multiple harmonics of the local plasma frequency oscillation, excited in the plasma surrounding the antenna in response to the transmission of ionospheric sounding pulses. Enhanced accuracy is achieved in higher-density (n e > 150 cm -3 ) plasmas, when MARSIS AIS is able to directly measure the fundamental frequency of the local plasma oscillation. To demonstrate the usefulness of this data set, the derived plasma densities are binned by altitude and solar zenith angle in regions over weak (|B c | < 20 nT) and strong (|B c | > 20 nT) crustal magnetic fields, and we find clear and consistent evidence for a significant asymmetry between these two regions. We show that within the 300-1200 km altitude range sampled, the median plasma density is substantially higher on the dayside in regions of relatively stronger crustal fields than under equivalent illuminations in regions of relatively weaker crustal fields. Conversely, on the nightside, median plasma densities are found to be higher in regions of relatively weaker crustal fields. We suggest that the observed asymmetry arises as a result of the modulation of the efficiency of plasma transport processes by the irregular crustal fields and the generally horizontal draped interplanetary magnetic field.
The spatially inhomogeneous, small-scale crustal magnetic fields of Mars influence the escape of planetary atmospheric species and the interaction of the solar wind with the ionosphere. Understanding the plasma response to crustal magnetic field regions can therefore provide insight to ionospheric structure and dynamics. To date, several localized spatial structures in ionospheric properties that have been observed over regions of varying magnetic field at Mars have yet to be explained. In this study, a two-dimensional ionospheric model is used to simulate the effects of field-aligned plasma transport in regions of strong crustal magnetic fields. Resulting spatial and diurnal plasma distributions are analyzed and found to agree with observations from several spacecraft and offer compelling interpretations for many of the anomalous ionospheric behaviors observed at or near regions of strong crustal magnetic fields on Mars.
We present evidence of a substantial ionospheric response to a strong interplanetary coronal mass ejection (ICME) detected by the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) on board the Mars Express (MEX) spacecraft. A powerful ICME impacted the Martian ionosphere beginning on 5 June 2011, peaking on 6 June, and trailing off over about a week. This event caused a strong response in the charged particle detector of the High-Energy Neutron Detector (HEND) on board the Odyssey spacecraft. The ion mass spectrometer of the Analyzer of Space Plasmas and Energetic Atoms instrument on MEX detected an increase in background counts, simultaneous with the increase seen by HEND, due to the flux of solar energetic particles (SEPs) associated with the ICME. Local densities and magnetic field strengths measured by MARSIS and enhancements of 100 eV electrons denote the passing of an intense space weather event. Local density and magnetosheath electron measurements and remote soundings show compression of ionospheric plasma to lower altitudes due to increased solar wind dynamic pressure. MARSIS topside sounding of the ionosphere indicates that it is extended well beyond the terminator, to about 116 • solar zenith angle, in a highly disturbed state. This extension may be due to increased ionization due to SEPs and magnetosheath electrons or to plasma transport across the terminator. The surface reflection from both ionospheric sounding and subsurface modes of the MARSIS radar was attenuated, indicating increased electron content in the Mars ionosphere at low altitudes, where the atmosphere is dense.
Sounding (MARSIS) instrument onboard Mars Express of the thermal electron plasma density of the Martian ionosphere and investigate the extent to which it is influenced by the presence of Mars's remnant crustal magnetic fields. We use locally measured electron densities, derived when MARSIS is operating in active ionospheric sounding (AIS) mode, covering an altitude range from ∼300 km to ∼1200 km. We compare these measured densities to an empirical model of the dayside ionospheric plasma density in this diffusive transport-dominated regime. We show that small spatial-scale departures from the averaged values are strongly correlated with the pattern of the crustal fields. Persistently elevated densities are seen in regions of relatively stronger crustal fields across the whole altitude range. Comparing these results with measurements of the (scalar) magnetic field also obtained by MARSIS/AIS, we characterize the dayside strength of the draped magnetic fields in the same regions. Finally, we provide a revised empirical model of the plasma density in the Martian ionosphere, including parameterizations for both the crustal field-dominated and draping-dominated regimes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.